文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

慢性肾衰竭的血脂异常:性质、机制及潜在后果

Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences.

作者信息

Vaziri N D

机构信息

Division of Nephrology and Hypertension, UCI Medical Center, Orange, CA 92868, USA.

出版信息

Am J Physiol Renal Physiol. 2006 Feb;290(2):F262-72. doi: 10.1152/ajprenal.00099.2005.


DOI:10.1152/ajprenal.00099.2005
PMID:16403839
Abstract

Chronic renal failure (CRF) results in profound lipid disorders, which stem largely from dysregulation of high-density lipoprotein (HDL) and triglyceride-rich lipoprotein metabolism. Specifically, maturation of HDL is impaired and its composition is altered in CRF. In addition, clearance of triglyceride-rich lipoproteins and their atherogenic remnants is impaired, their composition is altered, and their plasma concentrations are elevated in CRF. Impaired maturation of HDL in CRF is primarily due to downregulation of lecithin-cholesterol acyltransferase (LCAT) and, to a lesser extent, increased plasma cholesteryl ester transfer protein (CETP). Triglyceride enrichment of HDL in CRF is primarily due to hepatic lipase deficiency and elevated CETP activity. The CRF-induced hypertriglyceridemia, abnormal composition, and impaired clearance of triglyceride-rich lipoproteins and their remnants are primarily due to downregulation of lipoprotein lipase, hepatic lipase, and the very-low-density lipoprotein receptor, as well as, upregulation of hepatic acyl-CoA cholesterol acyltransferase (ACAT). In addition, impaired HDL metabolism contributes to the disturbances of triglyceride-rich lipoprotein metabolism. These abnormalities are compounded by downregulation of apolipoproteins apoA-I, apoA-II, and apoC-II in CRF. Together, these abnormalities may contribute to the risk of arteriosclerotic cardiovascular disease and may adversely affect progression of renal disease and energy metabolism in CRF.

摘要

慢性肾衰竭(CRF)会导致严重的脂质紊乱,这主要源于高密度脂蛋白(HDL)和富含甘油三酯的脂蛋白代谢失调。具体而言,CRF患者中HDL的成熟受到损害,其组成发生改变。此外,富含甘油三酯的脂蛋白及其致动脉粥样硬化残余物的清除受损,其组成改变,且在CRF患者中其血浆浓度升高。CRF中HDL成熟受损主要是由于卵磷脂胆固醇酰基转移酶(LCAT)下调,在较小程度上是由于血浆胆固醇酯转运蛋白(CETP)增加。CRF中HDL的甘油三酯富集主要是由于肝脂肪酶缺乏和CETP活性升高。CRF诱导的高甘油三酯血症、富含甘油三酯的脂蛋白及其残余物的异常组成和清除受损主要是由于脂蛋白脂肪酶、肝脂肪酶和极低密度脂蛋白受体下调,以及肝酰基辅酶A胆固醇酰基转移酶(ACAT)上调。此外,HDL代谢受损导致富含甘油三酯的脂蛋白代谢紊乱。这些异常因CRF中载脂蛋白apoA-I、apoA-II和apoC-II下调而加剧。总之,这些异常可能导致动脉粥样硬化性心血管疾病风险增加,并可能对CRF患者的肾病进展和能量代谢产生不利影响。

相似文献

[1]
Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences.

Am J Physiol Renal Physiol. 2006-2

[2]
Causes of dysregulation of lipid metabolism in chronic renal failure.

Semin Dial. 2009

[3]
Upregulation of acyl-CoA: cholesterol acyltransferase in chronic renal failure.

Am J Physiol Endocrinol Metab. 2002-10

[4]
Lipid and lipoprotein metabolism in chronic kidney disease.

J Ren Nutr. 2009-1

[5]
Role of lipases, lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in abnormal high density lipoprotein metabolism in insulin resistance and type 2 diabetes mellitus.

Clin Lab. 2003

[6]
Down-regulation of hepatic lecithin:cholesterol acyltransferase gene expression in chronic renal failure.

Kidney Int. 2001-6

[7]
Abnormal lipid and apolipoprotein composition of major lipoprotein density classes in patients with chronic renal failure.

Nephrol Dial Transplant. 1996-1

[8]
Lipotoxicity and impaired high density lipoprotein-mediated reverse cholesterol transport in chronic kidney disease.

J Ren Nutr. 2010-9

[9]
ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure.

Am J Physiol Renal Physiol. 2004-11

[10]
Downregulation of hepatic acyl-CoA:diglycerol acyltransferase in chronic renal failure.

Am J Physiol Renal Physiol. 2004-7

引用本文的文献

[1]
The effects of chronic kidney disease stages on dyslipidemia, cardiovascular disease prevalence and mortality.

North Clin Istanb. 2025-1-28

[2]
Allopurinol use predicts lower low-density lipoprotein cholesterol in patients with pre-dialysis chronic kidney disease-a prospective cohort study.

Clin Kidney J. 2024-12-9

[3]
Longitudinal Lipid Trajectories and Progression of CKD in Children.

Kidney Int Rep. 2025-2-17

[4]
Inflammatory markers mediate association of AIP with kidney failure risk: data from National Health and Nutrition Examination Survey (NHANES) 2005-2018.

Ren Fail. 2025-12

[5]
High density lipoprotein particle size and function associate with new cardiovascular events in patients with chronic kidney disease.

PLoS One. 2025-4-1

[6]
The prognostic value of remnant cholesterol to adverse renal outcomes in patients with type 2 diabetes.

Diabetol Metab Syndr. 2025-2-12

[7]
Lipidomics-based natural products for chronic kidney disease treatment.

Heliyon. 2025-1-2

[8]
The relationship between kidney function and cardiometabolic risk factors, anthropometric indices, and dietary inflammatory index in the Iranian general population: a cross-sectional study.

BMC Nephrol. 2025-1-3

[9]
Review of Exercise Interventions to Improve Clinical Outcomes in Nondialysis CKD.

Kidney Int Rep. 2024-8-2

[10]
Lipid metabolism disorders and albuminuria risk: insights from National Health and Nutrition Examination Survey 2001-2018 and Mendelian randomization analyses.

Ren Fail. 2024-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索