de Vries Rindert, Borggreve Susanna E, Dullaart Robin P F
Department of Endocrinology, University Hospital Groningen, The Netherlands.
Clin Lab. 2003;49(11-12):601-13.
Dyslipidaemia, hallmarked by low HDL cholesterol and high plasma triglycerides, is a feature of insulin resistance and type 2 diabetes mellitus. These lipoprotein abnormalities represent major cardiovascular risk factors in these conditions. Among other factors, lipoprotein lipase (LPL), hepatic lipase (HL), lecithin:cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) play an important role in an abnormal HDL metabolism in insulin resistance and type 2 diabetes mellitus. LPL hydrolyses lipoprotein triglycerides, thus providing lipids for HDL formation. In insulin resistant states, a decreased post-heparin plasma LPL activity contributes to a low HDL cholesterol, whereas an increased activity of HL reduces HDL particle size by hydrolysing its triglycerides and phospholipids. High HL activity coincides with low HDL cholesterol. The esterification of free cholesterol by LCAT increases HDL particle size. Subsequent CETP action results in transfer of cholesteryl esters from HDL towards triglyceride-rich lipoproteins. This cholesteryl ester transfer process results in lower HDL cholesterol and indirectly decreases HDL size. Plasma cholesterol esterification is unaltered or increased, whereas cholesteryl ester transfer is enhanced in type 2 diabetes mellitus, abnormalities which are probably related to the degree of hypertriglyceridaemia. It is plausible that a low LPL activity contributes to premature atherosclerosis as observed in insulin resistance and type 2 diabetes mellitus, but the effects of high HL activity and altered plasma cholesterol esterification on atherosclerosis development are uncertain. Since the cholesteryl ester transfer process between lipoproteins provides a metabolic intermediate between low HDL cholesterol and high plasma triglycerides, hypertriglyceridaemia-associated accelerated transfer of cholesteryl ester out of HDL may be pathogenetically involved in the development of cardiovascular disease in insulin resistance and type 2 diabetes mellitus.
以低高密度脂蛋白胆固醇和高血浆甘油三酯为特征的血脂异常是胰岛素抵抗和2型糖尿病的一个特点。这些脂蛋白异常是这些情况下主要的心血管危险因素。在其他因素中,脂蛋白脂肪酶(LPL)、肝脂肪酶(HL)、卵磷脂胆固醇酰基转移酶(LCAT)和胆固醇酯转运蛋白(CETP)在胰岛素抵抗和2型糖尿病的异常高密度脂蛋白代谢中起重要作用。LPL水解脂蛋白甘油三酯,从而为高密度脂蛋白的形成提供脂质。在胰岛素抵抗状态下,肝素后血浆LPL活性降低导致高密度脂蛋白胆固醇降低,而HL活性增加则通过水解其甘油三酯和磷脂来减小高密度脂蛋白颗粒大小。高HL活性与低高密度脂蛋白胆固醇同时出现。LCAT将游离胆固醇酯化会增加高密度脂蛋白颗粒大小。随后的CETP作用导致胆固醇酯从高密度脂蛋白向富含甘油三酯的脂蛋白转移。这种胆固醇酯转移过程导致高密度脂蛋白胆固醇降低,并间接减小高密度脂蛋白大小。2型糖尿病患者血浆胆固醇酯化未改变或增加,而胆固醇酯转移增强,这些异常可能与高甘油三酯血症的程度有关。胰岛素抵抗和2型糖尿病中观察到的低LPL活性可能导致动脉粥样硬化过早发生,但高HL活性和血浆胆固醇酯化改变对动脉粥样硬化发展的影响尚不确定。由于脂蛋白之间的胆固醇酯转移过程在低高密度脂蛋白胆固醇和高血浆甘油三酯之间提供了一种代谢中间体,与高甘油三酯血症相关的胆固醇酯从高密度脂蛋白加速转移可能在胰岛素抵抗和2型糖尿病心血管疾病的发生中具有发病机制上的作用。