Federico Concetta, Scavo Cinzia, Cantarella Catia Daniela, Motta Salvatore, Saccone Salvatore, Bernardi Giorgio
Dipartimento di Biologia Animale "M. La Greca", University of Catania, Via Androne 81, 95124, Catania, Italy.
Chromosoma. 2006 Apr;115(2):123-8. doi: 10.1007/s00412-005-0039-z. Epub 2006 Jan 11.
In situ hybridizations of single-copy GC-rich, gene-rich and GC-poor, gene-poor chicken DNA allowed us to localize the gene-rich and the gene-poor chromosomal regions in interphase nuclei of cold-blooded vertebrates. Our results showed that the gene-rich regions from amphibians (Rana esculenta) and reptiles (Podarcis sicula) occupy the more internal part of the nuclei, whereas the gene-poor regions occupy the periphery. This finding is similar to that previously reported in warm-blooded vertebrates, in spite of the lower GC levels of the gene-rich regions of cold-blooded vertebrates. This suggests that this similarity extends to chromatin structure, which is more open in the gene-rich regions of both mammals and birds and more compact in the gene-poor regions. In turn, this may explain why the compositional transition undergone by the genome at the emergence of homeothermy did not involve the entire ancestral genome but only a small part of it, and why it involved both coding and noncoding sequences. Indeed, the GC level increased only in that part of the genome that needed a thermodynamic stabilization, namely in the more open gene-rich chromatin of the nuclear interior, whereas the gene-poor chromatin of the periphery was stabilized by its own compact structure.
对富含GC、基因丰富以及GC含量低、基因稀少的鸡单拷贝DNA进行原位杂交,使我们能够在冷血脊椎动物的间期核中定位基因丰富和基因稀少的染色体区域。我们的结果表明,两栖动物(食用蛙)和爬行动物(意大利壁蜥)的基因丰富区域占据细胞核的更内部部分,而基因稀少区域占据外周。这一发现与先前在温血脊椎动物中报道的结果相似,尽管冷血脊椎动物基因丰富区域的GC水平较低。这表明这种相似性延伸到染色质结构,在哺乳动物和鸟类的基因丰富区域中染色质结构更开放,而在基因稀少区域中更紧凑。反过来,这可能解释了为什么在恒温动物出现时基因组经历的组成转变没有涉及整个祖先基因组,而只涉及其中一小部分,以及为什么它涉及编码和非编码序列。事实上,GC水平仅在基因组中需要热力学稳定的部分增加,即在核内部更开放的基因丰富染色质中,而外周的基因稀少染色质通过其自身的紧密结构得以稳定。