Suppr超能文献

触觉辨别学习过程中 S1 神经反应的变化。

Changes in S1 neural responses during tactile discrimination learning.

机构信息

Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.

出版信息

J Neurophysiol. 2010 Jul;104(1):300-12. doi: 10.1152/jn.00194.2010. Epub 2010 May 5.

Abstract

In freely moving rats that are actively performing a discrimination task, single-unit responses in primary somatosensory cortex (S1) are strikingly different from responses to comparable tactile stimuli in immobile rats. For example, in the active discrimination context prestimulus response modulations are common, responses are longer in duration and more likely to be inhibited. To determine whether these differences emerge as rats learned a whisker-dependent discrimination task, we recorded single-unit S1 activity while rats learned to discriminate aperture-widths using their whiskers. Even before discrimination training began, S1 responses in freely moving rats showed many of the signatures of active responses, such as increased duration of response and prestimulus response modulations. As rats subsequently learned the discrimination task, single unit responses changed: more cortical units responded to the stimuli, neuronal sensory responses grew in duration, and individual neurons better predicted aperture-width. In summary, the operant behavioral context changes S1 tactile responses even in the absence of tactile discrimination, whereas subsequent width discrimination learning refines the S1 representation of aperture-width.

摘要

在自由活动的大鼠中,主动执行辨别任务时,初级体感皮层(S1)中的单细胞反应与在不动大鼠中对类似触觉刺激的反应明显不同。例如,在主动辨别情境中,刺激前反应调制很常见,反应持续时间更长,更有可能被抑制。为了确定这些差异是否随着大鼠学会了依赖胡须的辨别任务而出现,我们记录了大鼠用胡须辨别孔径时 S1 的单细胞活动。甚至在开始辨别训练之前,自由活动大鼠的 S1 反应就表现出许多主动反应的特征,例如反应持续时间延长和刺激前反应调制。随着大鼠随后学会了辨别任务,单个单元的反应发生了变化:更多的皮质单元对刺激做出反应,神经元感觉反应持续时间延长,单个神经元更好地预测孔径宽度。总之,操作行为环境改变了 S1 的触觉反应,即使在没有触觉辨别任务的情况下也是如此,而随后的宽度辨别学习则使 S1 对孔径宽度的表示更加精细。

相似文献

1
Changes in S1 neural responses during tactile discrimination learning.
J Neurophysiol. 2010 Jul;104(1):300-12. doi: 10.1152/jn.00194.2010. Epub 2010 May 5.
3
Layer-specific somatosensory cortical activation during active tactile discrimination.
Science. 2004 Jun 25;304(5679):1989-92. doi: 10.1126/science.1093318.
4
Bilateral Discrimination of Tactile Patterns without Whisking in Freely Running Rats.
J Neurosci. 2017 Aug 9;37(32):7567-7579. doi: 10.1523/JNEUROSCI.0528-17.2017. Epub 2017 Jun 29.
6
Behavioral detection of passive whisker stimuli requires somatosensory cortex.
Cereb Cortex. 2013 Jul;23(7):1655-62. doi: 10.1093/cercor/bhs155. Epub 2012 Jun 1.
9
Bilateral integration of whisker information in the primary somatosensory cortex of rats.
J Neurosci. 2001 Jul 15;21(14):5251-61. doi: 10.1523/JNEUROSCI.21-14-05251.2001.

引用本文的文献

1
Unsupervised pretraining in biological neural networks.
Nature. 2025 Jun 18. doi: 10.1038/s41586-025-09180-y.
2
Amygdala and Cortex Relationships during Learning of a Sensory Discrimination Task.
J Neurosci. 2024 Aug 21;44(34):e0125242024. doi: 10.1523/JNEUROSCI.0125-24.2024.
3
Neurophysiological correlates of tactile width discrimination in humans.
Front Hum Neurosci. 2023 May 12;17:1155102. doi: 10.3389/fnhum.2023.1155102. eCollection 2023.
4
Bayesian prediction of psychophysical detection responses from spike activity in the rat sensorimotor cortex.
J Comput Neurosci. 2023 May;51(2):207-222. doi: 10.1007/s10827-023-00844-0. Epub 2023 Jan 25.
5
Dynamic reorganization of the cortico-basal ganglia-thalamo-cortical network during task learning.
Cell Rep. 2022 Sep 20;40(12):111394. doi: 10.1016/j.celrep.2022.111394.
6
Learning and attention increase visual response selectivity through distinct mechanisms.
Neuron. 2022 Feb 16;110(4):686-697.e6. doi: 10.1016/j.neuron.2021.11.016. Epub 2021 Dec 13.
7
How many neurons are sufficient for perception of cortical activity?
Elife. 2020 Oct 26;9:e58889. doi: 10.7554/eLife.58889.
8
NMDAR-Dependent Emergence of Behavioral Representation in Primary Visual Cortex.
Cell Rep. 2020 Jul 28;32(4):107970. doi: 10.1016/j.celrep.2020.107970.
9
Psychophysical detection and learning in freely behaving rats: a probabilistic dynamical model for operant conditioning.
J Comput Neurosci. 2020 Aug;48(3):333-353. doi: 10.1007/s10827-020-00751-8. Epub 2020 Jul 8.
10
Learning-related population dynamics in the auditory thalamus.
Elife. 2020 Jul 8;9:e56307. doi: 10.7554/eLife.56307.

本文引用的文献

1
Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning.
Neurobiol Learn Mem. 2009 Oct;92(3):400-9. doi: 10.1016/j.nlm.2009.05.006. Epub 2009 May 23.
2
Learning reward timing in cortex through reward dependent expression of synaptic plasticity.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6826-31. doi: 10.1073/pnas.0901835106. Epub 2009 Apr 3.
3
Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex.
Neurobiol Learn Mem. 2009 Jul;92(1):27-34. doi: 10.1016/j.nlm.2009.02.008. Epub 2009 Feb 26.
4
Motor modulation of afferent somatosensory circuits.
Nat Neurosci. 2008 Dec;11(12):1430-8. doi: 10.1038/nn.2227. Epub 2008 Nov 16.
5
Consciousness and anesthesia.
Science. 2008 Nov 7;322(5903):876-80. doi: 10.1126/science.1149213.
6
Reward facilitates tactile judgments and modulates hemodynamic responses in human primary somatosensory cortex.
J Neurosci. 2008 Aug 13;28(33):8161-8. doi: 10.1523/JNEUROSCI.1093-08.2008.
7
Different dynamics of performance and brain activation in the time course of perceptual learning.
Neuron. 2008 Mar 27;57(6):827-33. doi: 10.1016/j.neuron.2008.02.034.
9
Detection psychophysics of intracortical microstimulation in rat primary somatosensory cortex.
Eur J Neurosci. 2007 Apr;25(7):2161-9. doi: 10.1111/j.1460-9568.2007.05449.x.
10
Auditory associative memory and representational plasticity in the primary auditory cortex.
Hear Res. 2007 Jul;229(1-2):54-68. doi: 10.1016/j.heares.2007.01.004. Epub 2007 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验