Salomao Marcela, An Xiuli, Guo Xinhua, Gratzer Walter B, Mohandas Narla, Baines Anthony J
Red Cell Physiology Laboratory, New York Blood Center, New York, NY 10021, USA.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):643-8. doi: 10.1073/pnas.0507661103. Epub 2006 Jan 9.
Mammalian red blood cells, unlike those of other vertebrates, must withstand the rigors of circulation in the absence of new protein synthesis. Key to this is plasma membrane elasticity deriving from the protein spectrin, which forms a network on the cytoplasmic face. Spectrin is a tetramer (alphabeta)(2), made up of alphabeta dimers linked head to head. We show here that one component of erythrocyte spectrin, alphaI, is encoded by a gene unique to mammals. Phylogenetic analysis suggests that the other alpha-spectrin gene (alphaII) common to all vertebrates was duplicated after the emergence of amphibia, and that the resulting alphaI gene was preserved only in mammals. The activities of alphaI and alphaII spectrins differ in the context of the human red cell membrane. An alphaI-spectrin fragment containing the site of head-to-head interaction with the beta-chain binds more weakly than the corresponding alphaII fragment to this site. The latter competes so strongly with endogenous alphaI as to cause destabilization of membranes at 100-fold lower concentration than the alphaI fragment. The efficacies of alphaI/alphaII chimeras indicate that the partial structural repeat, which binds to the complementary beta-spectrin element, and the adjacent complete repeat together determine the strength of the dimer-dimer interaction on the membrane. Alignment of all available alpha-spectrin N-terminal sequences reveals three blocks of sequence unique to alphaI. Furthermore, human alphaII-spectrin is closer to fruitfly alpha-spectrin than to human alphaI-spectrin, consistent with adaptation of alphaI to new functions. We conclude that alphaI-spectrin represents a neofunctionalized spectrin adapted to the rapid make and break of tetramers.
与其他脊椎动物的红细胞不同,哺乳动物的红细胞必须在缺乏新蛋白质合成的情况下承受循环的严酷考验。关键在于由血影蛋白形成的质膜弹性,血影蛋白在细胞质面上形成一个网络。血影蛋白是一种四聚体(αβ)₂,由头对头连接的αβ二聚体组成。我们在此表明,红细胞血影蛋白的一个组分αI由哺乳动物特有的基因编码。系统发育分析表明,所有脊椎动物共有的另一个α-血影蛋白基因(αII)在两栖动物出现后发生了复制,并且产生的αI基因仅在哺乳动物中保留。αI和αII血影蛋白的活性在人类红细胞膜的背景下有所不同。一个包含与β链头对头相互作用位点的αI-血影蛋白片段与该位点的结合比相应的αII片段弱。后者与内源性αI竞争非常强烈,以至于在比αI片段低100倍的浓度下就会导致膜的不稳定。αI/αII嵌合体的功效表明,与互补β-血影蛋白元件结合的部分结构重复序列和相邻的完整重复序列共同决定了膜上二聚体-二聚体相互作用的强度。所有可用的α-血影蛋白N端序列的比对揭示了αI特有的三个序列块。此外,人类αII-血影蛋白与果蝇α-血影蛋白的亲缘关系比与人类αI-血影蛋白更近,这与αI适应新功能一致。我们得出结论,αI-血影蛋白代表一种适应于四聚体快速形成和断裂的新功能化血影蛋白。