Suppr超能文献

spectrin 四聚化结构域的缓慢、可逆、偶联折叠和结合。

Slow, reversible, coupled folding and binding of the spectrin tetramerization domain.

机构信息

Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.

出版信息

Biophys J. 2012 Nov 21;103(10):2203-14. doi: 10.1016/j.bpj.2012.10.012. Epub 2012 Nov 20.

Abstract

Many intrinsically disordered proteins (IDPs) are significantly unstructured under physiological conditions. A number of these IDPs have been shown to undergo coupled folding and binding reactions whereby they can gain structure upon association with an appropriate partner protein. In general, these systems display weaker binding affinities than do systems with association between completely structured domains, with micromolar K(d) values appearing typical. One such system is the association between α- and β-spectrin, where two partially structured, incomplete domains associate to form a fully structured, three-helix bundle, the spectrin tetramerization domain. Here, we use this model system to demonstrate a method for fitting association and dissociation kinetic traces where, using typical biophysical concentrations, the association reactions are expected to be highly reversible. We elucidate the unusually slow, two-state kinetics of spectrin assembly in solution. The advantages of studying kinetics in this regime include the potential for gaining equilibrium constants as well as rate constants, and for performing experiments with low protein concentrations. We suggest that this approach would be particularly appropriate for high-throughput mutational analysis of two-state reversible binding processes.

摘要

许多固有无序蛋白质(IDPs)在生理条件下显著无结构。已经证明其中一些 IDPs 经历偶联折叠和结合反应,通过与适当的伴侣蛋白结合,它们可以获得结构。通常,这些系统的结合亲和力比具有完全结构域之间的关联的系统弱,具有微摩尔 K(d) 值的系统是典型的。这样的系统之一是α-和β- spectrin 之间的关联,其中两个部分结构的、不完整的结构域缔合形成完全结构的、三螺旋束 spectrin 四聚化结构域。在这里,我们使用这个模型系统来演示一种拟合关联和解离动力学轨迹的方法,其中在典型的生物物理浓度下,关联反应预计是高度可逆的。我们阐明了 spectrin 在溶液中组装的异常缓慢的两态动力学。在该区域研究动力学的优点包括获得平衡常数和速率常数的潜力,以及在低蛋白浓度下进行实验的潜力。我们认为,这种方法特别适合于高通量突变分析二态可逆结合过程。

相似文献

1
Slow, reversible, coupled folding and binding of the spectrin tetramerization domain.
Biophys J. 2012 Nov 21;103(10):2203-14. doi: 10.1016/j.bpj.2012.10.012. Epub 2012 Nov 20.
2
Mechanism of assembly of the non-covalent spectrin tetramerization domain from intrinsically disordered partners.
J Mol Biol. 2014 Jan 9;426(1):21-35. doi: 10.1016/j.jmb.2013.08.027. Epub 2013 Sep 17.
4
Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride.
PLoS One. 2015 Jan 24;10(1):e0116991. doi: 10.1371/journal.pone.0116991. eCollection 2015.
5
Similarities between the spectrin SH3 domain denatured state and its folding transition state.
J Mol Biol. 2000 Apr 14;297(5):1217-29. doi: 10.1006/jmbi.2000.3618.
8
Apparent cooperativity in the folding of multidomain proteins depends on the relative rates of folding of the constituent domains.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18113-8. doi: 10.1073/pnas.0604580103. Epub 2006 Nov 15.
9
Folding of the alphaII-spectrin SH3 domain under physiological salt conditions.
Arch Biochem Biophys. 2008 Jun 1;474(1):39-47. doi: 10.1016/j.abb.2008.02.042. Epub 2008 Mar 7.
10
Distinguishing specific and nonspecific interdomain interactions in multidomain proteins.
Biophys J. 2008 Jan 15;94(2):622-8. doi: 10.1529/biophysj.107.119123. Epub 2007 Sep 21.

引用本文的文献

4
Driving forces of the complex formation between highly charged disordered proteins.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2304036120. doi: 10.1073/pnas.2304036120. Epub 2023 Oct 5.
5
Phase Transitions of Associative Biomacromolecules.
Chem Rev. 2023 Jul 26;123(14):8945-8987. doi: 10.1021/acs.chemrev.2c00814. Epub 2023 Mar 7.
6
Intrinsic protein disorder uncouples affinity from binding specificity.
Protein Sci. 2022 Nov;31(11):e4455. doi: 10.1002/pro.4455.
7
On the role of phase separation in the biogenesis of membraneless compartments.
EMBO J. 2022 Mar 1;41(5):e109952. doi: 10.15252/embj.2021109952. Epub 2022 Feb 2.
9
Two Differential Binding Mechanisms of FG-Nucleoporins and Nuclear Transport Receptors.
Cell Rep. 2018 Mar 27;22(13):3660-3671. doi: 10.1016/j.celrep.2018.03.022.
10
Affinity of IDPs to their targets is modulated by ion-specific changes in kinetics and residual structure.
Proc Natl Acad Sci U S A. 2017 Sep 12;114(37):9882-9887. doi: 10.1073/pnas.1705105114. Epub 2017 Aug 28.

本文引用的文献

2
Rate constants and mechanisms of intrinsically disordered proteins binding to structured targets.
Phys Chem Chem Phys. 2012 Aug 14;14(30):10466-76. doi: 10.1039/c2cp41196b. Epub 2012 Jun 28.
3
Kinetic basis for the competitive recruitment of TolB by the intrinsically disordered translocation domain of colicin E9.
J Mol Biol. 2012 May 18;418(5):269-80. doi: 10.1016/j.jmb.2012.01.039. Epub 2012 Jan 30.
4
The transition state of coupled folding and binding for a flexible β-finger.
J Mol Biol. 2012 Mar 30;417(3):253-61. doi: 10.1016/j.jmb.2012.01.042. Epub 2012 Jan 30.
6
Intrinsic disorder: signaling via highly specific but short-lived association.
Trends Biochem Sci. 2012 Feb;37(2):43-8. doi: 10.1016/j.tibs.2011.11.002. Epub 2011 Dec 7.
7
Automated prediction of protein association rate constants.
Structure. 2011 Dec 7;19(12):1744-51. doi: 10.1016/j.str.2011.10.015.
8
Dynamics and mechanisms of coupled protein folding and binding reactions.
Curr Opin Struct Biol. 2012 Feb;22(1):21-9. doi: 10.1016/j.sbi.2011.09.010. Epub 2011 Nov 29.
9
Side-chain interactions form late and cooperatively in the binding reaction between disordered peptides and PDZ domains.
J Am Chem Soc. 2012 Jan 11;134(1):599-605. doi: 10.1021/ja209341w. Epub 2011 Dec 16.
10
Kinetic recognition of the retinoblastoma tumor suppressor by a specific protein target.
J Mol Biol. 2011 Sep 16;412(2):267-84. doi: 10.1016/j.jmb.2011.07.015. Epub 2011 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验