Law Michael J, Linde Michael E, Chambers Eric J, Oubridge Chris, Katsamba Phinikoula S, Nilsson Lennart, Haworth Ian S, Laird-Offringa Ite A
Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90089-9176, USA.
Nucleic Acids Res. 2006 Jan 10;34(1):275-85. doi: 10.1093/nar/gkj436. Print 2006.
Previous kinetic investigations of the N-terminal RNA recognition motif (RRM) domain of spliceosomal protein U1A, interacting with its RNA target U1 hairpin II, provided experimental evidence for a 'lure and lock' model of binding in which electrostatic interactions first guide the RNA to the protein, and close range interactions then lock the two molecules together. To further investigate the 'lure' step, here we examined the electrostatic roles of two sets of positively charged amino acids in U1A that do not make hydrogen bonds to the RNA: Lys20, Lys22 and Lys23 close to the RNA-binding site, and Arg7, Lys60 and Arg70, located on 'top' of the RRM domain, away from the RNA. Surface plasmon resonance-based kinetic studies, supplemented with salt dependence experiments and molecular dynamics simulation, indicate that Lys20 predominantly plays a role in association, while nearby residues Lys22 and Lys23 appear to be at least as important for complex stability. In contrast, kinetic analyses of residues away from the RNA indicate that they have a minimal effect on association and stability. Thus, well-positioned positively charged residues can be important for both initial complex formation and complex maintenance, illustrating the multiple roles of electrostatic interactions in protein-RNA complexes.
先前对剪接体蛋白U1A的N端RNA识别基序(RRM)结构域与其RNA靶标U1发夹II相互作用的动力学研究,为“吸引并锁定”结合模型提供了实验证据,即静电相互作用首先将RNA引导至蛋白质,然后近距离相互作用将两个分子锁定在一起。为了进一步研究“吸引”步骤,我们在此研究了U1A中两组不与RNA形成氢键的带正电荷氨基酸的静电作用:靠近RNA结合位点的Lys20、Lys22和Lys23,以及位于RRM结构域“顶部”、远离RNA的Arg7、Lys60和Arg70。基于表面等离子体共振的动力学研究,辅以盐依赖性实验和分子动力学模拟,表明Lys20在结合中起主要作用,而附近的残基Lys22和Lys23似乎对复合物稳定性至少同样重要。相比之下,对远离RNA的残基的动力学分析表明,它们对结合和稳定性的影响最小。因此,定位良好的带正电荷残基对初始复合物形成和复合物维持都很重要,这说明了静电相互作用在蛋白质-RNA复合物中的多种作用。