Degani Ilan, Tannor David J
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.
J Phys Chem A. 2006 Apr 27;110(16):5395-410. doi: 10.1021/jp056587r.
Finding multidimensional nondirect product discrete variable representations (DVRs) of Hamiltonian operators is one of the long standing challenges in computational quantum mechanics. The concept of a "DVR set" was introduced as a general framework for treating this problem by R. G. Littlejohn, M. Cargo, T. Carrington, Jr., K. A. Mitchell, and B. Poirier (J. Chem. Phys. 2002, 116, 8691). We present a general solution of the problem of calculating multidimensional DVR sets whose points are those of a known cubature formula. As an illustration, we calculate several new nondirect product cubature DVRs on the plane and on the sphere with up to 110 points. We also discuss simple and potentially very useful finite basis representations (FBRs), based on general (nonproduct) cubatures. Connections are drawn to a novel view on cubature presented by I. Degani, J. Schiff, and D. J. Tannor (Num. Math. 2005, 101, 479), in which commuting extensions of coordinate matrices play a central role. Our construction of DVR sets answers a problem left unresolved in the latter paper, namely, the problem of interpreting as function spaces the vector spaces on which commuting extensions act.
寻找哈密顿算符的多维非直积离散变量表示(DVRs)是计算量子力学中长期存在的挑战之一。R. G. Littlejohn、M. Cargo、T. Carrington, Jr.、K. A. Mitchell和B. Poirier(《化学物理杂志》,2002年,第116卷,8691页)引入了“DVR集”的概念,作为处理该问题的通用框架。我们给出了计算多维DVR集问题的一般解,其点是已知求积公式的点。作为示例,我们计算了平面和球面上具有多达110个点的几个新的非直积求积DVR。我们还讨论了基于一般(非积)求积的简单且可能非常有用的有限基表示(FBRs)。我们将其与I. Degani、J. Schiff和D. J. Tannor(《数值数学》,2005年,第101卷,479页)提出的关于求积的新观点建立联系,其中坐标矩阵的对易扩展起着核心作用。我们对DVR集的构造回答了后一篇论文中未解决的一个问题,即把对易扩展作用的向量空间解释为函数空间的问题。