Hédoux A, Ionov R, Willart J-F, Lerbret A, Affouard F, Guinet Y, Descamps M, Prévost D, Paccou L, Danéde F
Laboratoire de Dynamique et Structure des Matériaux Moléculaires, UMR CNRS 8024, UFR de Physique Bâtiment P5, 59655 Villeneuve d'Ascq Cedex, France.
J Chem Phys. 2006 Jan 7;124(1):14703. doi: 10.1063/1.2139087.
Raman spectroscopy (in the low-frequency range and the amide I band region) and modulated differential scanning calorimetry investigations have been used to analyze temperature-induced structural changes in lysozyme dissolved in 1H2O and 2H2O in the thermal denaturation process. Low-frequency Raman data reveal a change in tertiary structure without concomitant unfolding of the secondary structure. Calorimetric data show that this structural change is responsible for the configurational entropy change associated with the strong-to-fragile liquid transition and correspond to about 1/3 of the native-denaturated transition enthalpy. This is the first stage of the thermal denaturation which is a precursor of the secondary structure change and is determined to be strongly dependent on the stability of the hydrogen-bond network in water. Low-frequency Raman spectroscopy provides information on the flexibility of the tertiary structure (in the native state and the transient folding state) in relation to the fragility of the mixture. The unfolding of the secondary structure appears as a consequence of the change in the tertiary structure and independent of the solvent. Protein conformational stability is directly dependent on the stability of the native tertiary structure. The structural transformation of tertiary structure can be detected through the enhanced 1H/2H exchange inhibited in native proteins. Taking into account similar features reported in the literature observed for different proteins it can be considered that the two-stage transformation observed in lysozyme dissolved in water is a general mechanism for the thermal denaturation of proteins.
拉曼光谱(在低频范围和酰胺I带区域)以及调制差示扫描量热法研究已被用于分析热变性过程中溶解在H₂O和D₂O中的溶菌酶的温度诱导结构变化。低频拉曼数据揭示了三级结构的变化,而二级结构并未随之展开。量热数据表明,这种结构变化是与强到弱的液体转变相关的构型熵变化的原因,并且相当于天然-变性转变焓的约1/3。这是热变性的第一阶段,是二级结构变化的先兆,并且被确定强烈依赖于水中氢键网络的稳定性。低频拉曼光谱提供了关于三级结构(在天然状态和瞬态折叠状态下)相对于混合物脆性的灵活性的信息。二级结构的展开似乎是三级结构变化的结果,并且与溶剂无关。蛋白质构象稳定性直接取决于天然三级结构的稳定性。三级结构的结构转变可以通过天然蛋白质中增强的¹H/²H交换抑制来检测。考虑到文献中报道的不同蛋白质观察到的类似特征,可以认为在溶解于水中的溶菌酶中观察到的两阶段转变是蛋白质热变性的一般机制。