Suppr超能文献

鲨鱼电感应器官的发育起源。

Developmental origin of shark electrosensory organs.

作者信息

Freitas Renata, Zhang Guangjun, Albert James S, Evans David H, Cohn Martin J

机构信息

Department of Zoology, University of Florida, PO Box 118525, Gainesville, FL 32611-8525, USA.

出版信息

Evol Dev. 2006 Jan-Feb;8(1):74-80. doi: 10.1111/j.1525-142X.2006.05076.x.

Abstract

Vertebrates have evolved electrosensory receptors that detect electrical stimuli on the surface of the skin and transmit them somatotopically to the brain. In chondrichthyans, the electrosensory system is composed of a cephalic network of ampullary organs, known as the ampullae of Lorenzini, that can detect extremely weak electric fields during hunting and navigation. Each ampullary organ consists of a gel-filled epidermal pit containing sensory hair cells, and synaptic connections with primary afferent neurons at the base of the pit that facilitate detection of voltage gradients over large regions of the body. The developmental origin of electroreceptors and the mechanisms that determine their spatial arrangement in the vertebrate head are not well understood. We have analyzed electroreceptor development in the lesser spotted catshark (Scyliorhinus canicula) and show that Sox8 and HNK1, two markers of the neural crest lineage, selectively mark sensory cells in ampullary organs. This represents the first evidence that the neural crest gives rise to electrosensory cells. We also show that pathfinding by cephalic mechanosensory and electrosensory axons follows the expression pattern of EphA4, a well-known guidance cue for axons and neural crest cells in osteichthyans. Expression of EphrinB2, which encodes a ligand for EphA4, marks the positions at which ampullary placodes are initiated in the epidermis, and EphA4 is expressed in surrounding mesenchyme. These results suggest that Eph-Ephrin signaling may establish an early molecular map for neural crest migration, axon guidance and placodal morphogenesis during development of the shark electrosensory system.

摘要

脊椎动物进化出了电感受器,能够检测皮肤表面的电刺激,并将其以躯体定位的方式传递到大脑。在软骨鱼类中,电感应系统由一个壶腹器官的头部网络组成,即洛伦兹壶腹,它能够在捕猎和导航过程中检测极其微弱的电场。每个壶腹器官由一个充满凝胶的表皮凹陷组成,其中包含感觉毛细胞,并且在凹陷底部与初级传入神经元有突触连接,这有助于检测身体大面积区域的电压梯度。电感受器的发育起源以及决定它们在脊椎动物头部空间排列的机制尚未完全了解。我们分析了小斑点猫鲨(Scyliorhinus canicula)的电感受器发育情况,结果表明,神经嵴谱系的两个标记物Sox8和HNK1选择性地标记了壶腹器官中的感觉细胞。这是神经嵴产生电感应细胞的首个证据。我们还表明,头部机械感受器和电感受器轴突的寻路遵循EphA4的表达模式,EphA4是硬骨鱼类中轴突和神经嵴细胞的一种著名的引导线索。编码EphA4配体的EphrinB2的表达标记了表皮中壶腹基板起始的位置,而EphA4在周围的间充质中表达。这些结果表明,Eph-Ephrin信号传导可能在鲨鱼电感应系统发育过程中为神经嵴迁移、轴突引导和基板形态发生建立一个早期分子图谱。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验