Suppr超能文献

Motor and sensory cortex in humans: topography studied with chronic subdural stimulation.

作者信息

Uematsu S, Lesser R, Fisher R S, Gordon B, Hara K, Krauss G L, Vining E P, Webber R W

机构信息

Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland.

出版信息

Neurosurgery. 1992 Jul;31(1):59-71; discussion 71-2. doi: 10.1227/00006123-199207000-00009.

Abstract

Classic neurosurgical teaching holds that once the Rolandic fissure (Rf) has been located, there are distinct differentiated primary motor and sensory functional units confined within a narrow cortical strip: Brodmann's Areas 4 and 6 for primary motor units in front of the Rf and 3, 1, and 2 for sensory units behind the Rf. To test this assumption, we examined in detail the records of cortical mapping done by electrical stimulation of the cerebral cortex via implanted subdural electrode grids in 35 patients with seizure disorders. Of 1381 stimulations of the electrode sites, 346 (25.1%) produced primary motor or motor-arrest and sensory responses in contralateral body parts: 56.8% were primary motor responses; 16.2% were motor-arrest; 22.5% were sensory; and the remaining 4.5% were mixed motor and sensory responses. Two-thirds (65.9%) of the primary motor responses were located within 10 mm of the Rf, and the remaining one-third (34.1%) were more than 10 mm anterior to the Rf or were posterior to the Rf. Furthermore, in the patient group with brain lesions, fewer than one-third (28.1%) of the responses were within the 10-mm narrow anterior strip. Our study reconfirmed that a significant number--at least one-third--of motor responses are distributed outside the classic narrow cortical strip. In patients with brain lesions, the motor representation is further displaced outside the narrow strip. This finding indicates that primary motor cortex may extend beyond the gyrus immediately anterior to the Rf.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验