Ceni Claire, Pochon Nathalie, Villaz Michel, Muller-Steffner Hélène, Schuber Francis, Baratier Julie, De Waard Michel, Ronjat Michel, Moutin Marie-Jo
Laboratoire Canaux Ioniques et Signalisation, INSERM E9931, DRDC-CEA (UJF Grenoble), 17 avenue des Martyrs, 38051 Grenoble Cedex 9, France.
Biochem J. 2006 Apr 15;395(2):417-26. doi: 10.1042/BJ20051321.
cADPR (cADP-ribose), a metabolite of NAD+, is known to modulate intracellular calcium levels and to be involved in calcium-dependent processes, including synaptic transmission, plasticity and neuronal excitability. However, the enzyme that is responsible for producing cADPR in the cytoplasm of neural cells, and particularly at the synaptic terminals of neurons, remains unknown. In the present study, we show that endogenous concentrations of cADPR are much higher in embryonic and neonate mouse brain compared with the adult tissue. We also demonstrate, by comparing wild-type and Cd38-/- tissues, that brain cADPR content is independent of the presence of CD38 (the best characterized mammalian ADP-ribosyl cyclase) not only in adult but also in developing tissues. We show that Cd38-/- synaptosome preparations contain high ADP-ribosyl cyclase activities, which are more important in neonates than in adults, in line with the levels of endogenous cyclic nucleotide. By using an HPLC method and adapting the cycling assay developed initially to study endogenous cADPR, we accurately examined the properties of the synaptosomal ADP-ribosyl cyclase. This intracellular enzyme has an estimated K(m) for NAD+ of 21 microM, a broad optimal pH at 6.0-7.0, and the concentration of free calcium has no major effect on its cADPR production. It binds NGD+ (nicotinamide-guanine dinucleotide), which inhibits its NAD+-metabolizing activities (K(i)=24 microM), despite its incapacity to cyclize this analogue. Interestingly, it is fully inhibited by low (micromolar) concentrations of zinc. We propose that this novel mammalian ADP-ribosyl cyclase regulates the production of cADPR and therefore calcium levels within brain synaptic terminals. In addition, this enzyme might be a potential target of neurotoxic Zn2+.
环ADP核糖(cADPR)是烟酰胺腺嘌呤二核苷酸(NAD+)的一种代谢产物,已知其可调节细胞内钙水平,并参与包括突触传递、可塑性和神经元兴奋性在内的钙依赖性过程。然而,负责在神经细胞胞质中,尤其是在神经元突触终末产生cADPR的酶仍不为人知。在本研究中,我们发现与成年组织相比,胚胎和新生小鼠脑中cADPR的内源性浓度要高得多。我们还通过比较野生型和Cd38基因敲除组织证明,脑cADPR含量不仅在成年组织中,而且在发育中的组织中均与CD38(特征最明确的哺乳动物ADP核糖基环化酶)的存在无关。我们发现,Cd38基因敲除的突触体标本含有较高的ADP核糖基环化酶活性,这在新生儿中比在成年人中更重要,与内源性环核苷酸水平一致。通过使用高效液相色谱法并采用最初开发用于研究内源性cADPR的循环测定法,我们精确地研究了突触体ADP核糖基环化酶的特性。这种细胞内酶对NAD+的估计米氏常数(K(m))为21微摩尔,在6.0 - 7.0有较宽的最适pH值,游离钙浓度对其cADPR产生没有主要影响。它结合烟酰胺鸟嘌呤二核苷酸(NGD+),尽管其无法将该类似物环化,但NGD+会抑制其NAD+代谢活性(抑制常数K(i)=24微摩尔)。有趣的是,它会被低(微摩尔)浓度的锌完全抑制。我们提出,这种新型哺乳动物ADP核糖基环化酶调节cADPR的产生,从而调节脑突触终末内的钙水平。此外,这种酶可能是神经毒性锌离子(Zn2+)的潜在靶点。