Suppr超能文献

经突变工程化获得的依赖 Mn 的 ADP-ribose/CDP-醇二磷酸酶的特异性环 ADP-核糖磷酸水解酶。

Specific cyclic ADP-ribose phosphohydrolase obtained by mutagenic engineering of Mn-dependent ADP-ribose/CDP-alcohol diphosphatase.

机构信息

Grupo de Enzimología, Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain.

Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Leiria, Leiria, Portugal.

出版信息

Sci Rep. 2018 Jan 18;8(1):1036. doi: 10.1038/s41598-017-18393-9.

Abstract

Cyclic ADP-ribose (cADPR) is a messenger for Ca mobilization. Its turnover is believed to occur by glycohydrolysis to ADP-ribose. However, ADP-ribose/CDP-alcohol diphosphatase (ADPRibase-Mn) acts as cADPR phosphohydrolase with much lower efficiency than on its major substrates. Recently, we showed that mutagenesis of human ADPRibase-Mn at Phe, Leu and Cys alters its specificity: the best substrate of the mutant F37A + L196F + C253A is cADPR by a short difference, Cys mutation being essential for cADPR preference. Its proximity to the 'northern' ribose of cADPR in docking models indicates Cys is a steric constraint for cADPR positioning. Aiming to obtain a specific cADPR phosphohydrolase, new mutations were tested at Asp, Val, Cys and Thr, all near the 'northern' ribose. First, the mutant F37A + L196F + C253G, with a smaller residue 253 (Ala > Gly), showed increased cADPR specificity. Then, the mutant F37A + L196F + V252A + C253G, with another residue made smaller (Val > Ala), displayed the desired specificity, with cADPR k/K ≈20-200-fold larger than for any other substrate. When tested in nucleotide mixtures, cADPR was exhausted while others remained unaltered. We suggest that the specific cADPR phosphohydrolase, by cell or organism transgenesis, or the designed mutations, by genome editing, provide opportunities to study the effect of cADPR depletion on the many systems where it intervenes.

摘要

环二核苷酸 ADP-核糖(cADPR)是 Ca 动员的信使。据信,其周转率通过糖基水解作用转化为 ADP-核糖。然而,ADP-核糖/CDP-醇二磷酸酶(ADPRibase-Mn)作为 cADPR 磷酸水解酶的作用效率远低于其主要底物。最近,我们发现突变人 ADPRibase-Mn 上的苯丙氨酸、亮氨酸和半胱氨酸改变了其特异性:突变体 F37A + L196F + C253A 的最佳底物与 cADPR 相差很短,半胱氨酸突变对于 cADPR 偏好是必需的。在对接模型中,其接近 cADPR 的“北部”核糖表明半胱氨酸是 cADPR 定位的空间限制。为了获得特异性 cADPR 磷酸水解酶,在靠近“北部”核糖的天冬氨酸、缬氨酸、半胱氨酸和苏氨酸处测试了新的突变。首先,突变体 F37A + L196F + C253G,其较小的残基 253(丙氨酸 > 甘氨酸),显示出增加的 cADPR 特异性。然后,突变体 F37A + L196F + V252A + C253G,另一个残基变小(缬氨酸 > 丙氨酸),显示出所需的特异性,cADPR k/K 比任何其他底物大 20-200 倍。在核苷酸混合物中测试时,cADPR 被耗尽,而其他物质保持不变。我们认为,通过细胞或生物体的转基因或通过基因组编辑设计的突变,可以提供机会研究 cADPR 耗竭对其干预的许多系统的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e15/5773619/b6812a0906cb/41598_2017_18393_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验