Suppr超能文献

短螺旋体在粘性环境中运动效率的提高。

Improvement in motion efficiency of the spirochete Brachyspira pilosicoli in viscous environments.

作者信息

Nakamura S, Adachi Y, Goto T, Magariyama Y

机构信息

School of Agriculture, Ibaraki University, Ami, Japan.

出版信息

Biophys J. 2006 Apr 15;90(8):3019-26. doi: 10.1529/biophysj.105.074336. Epub 2006 Jan 13.

Abstract

Spirochetes are unique among swimming bacteria in terms of their lack of external flagella. They actively move in viscous environments, and, surprisingly, the swimming speed of the spirochete Leptospira interrogans has been reported to increase with viscosity in methylcellulose solutions. Many researchers consider that the presence of a loose, quasi-rigid network formed by linear polymer molecules is related to this strange phenomenon. One of the authors has proposed a theory that expresses this idea mathematically and successfully explains the speed properties of an externally flagellated bacterium in viscous environments. This theory predicts that the ratio of swimming speed to wave frequency (v/f ratio, motion efficiency in a sense) increases with viscosity. In this study, we demonstrated a new method of measuring the swimming speed and wave frequency of spirochetes and the motion characteristics of a swine intestinal spirochete, Brachyspira pilosicoli strain NK1f, measured in viscous environments. Several sets of swimming speed and wave frequency data were simultaneously derived from an animation obtained by our method. The v/f ratio of NK1f displayed a tendency to increase with increasing viscosity, suggesting the validity of the above-mentioned theory. Improvement of motion efficiency is at least one of the factors that maintain spirochete motility in viscous environments.

摘要

螺旋体在游动细菌中独树一帜,因为它们没有外部鞭毛。它们能在粘性环境中主动移动,而且令人惊讶的是,据报道问号钩端螺旋体在甲基纤维素溶液中的游动速度会随着粘度的增加而提高。许多研究人员认为,由线性聚合物分子形成的松散、准刚性网络的存在与这种奇怪现象有关。其中一位作者提出了一种理论,该理论从数学上表达了这一观点,并成功解释了外部鞭毛细菌在粘性环境中的速度特性。该理论预测,游动速度与波频率的比值(v/f比值,在某种意义上即运动效率)会随着粘度的增加而提高。在本研究中,我们展示了一种测量螺旋体游动速度和波频率以及猪肠道螺旋体——柔毛短螺旋体NK1f菌株在粘性环境中运动特征的新方法。通过我们的方法从一段动画中同时获取了几组游动速度和波频率数据。NK1f的v/f比值呈现出随粘度增加而升高的趋势,这表明上述理论是正确的。运动效率的提高至少是螺旋体在粘性环境中保持运动能力的因素之一。

相似文献

2
[Morphology and motility of the spirochetes].[螺旋体的形态与运动]
Nihon Saikingaku Zasshi. 2014;69(3):527-38. doi: 10.3412/jsb.69.527.
3
Enhanced low-Reynolds-number propulsion in heterogeneous viscous environments.在非均匀粘性环境中增强的低雷诺数推进
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 1):051911. doi: 10.1103/PhysRevE.80.051911. Epub 2009 Nov 18.
6
Motility of the spirochete Leptospira.钩端螺旋体的运动性
Cell Motil Cytoskeleton. 1988;9(2):101-10. doi: 10.1002/cm.970090202.

引用本文的文献

4
The bank of swimming organisms at the micron scale (BOSO-Micro).微米尺度游泳生物库(BOSO-Micro)。
PLoS One. 2021 Jun 10;16(6):e0252291. doi: 10.1371/journal.pone.0252291. eCollection 2021.
6
Spirochete Flagella and Motility.螺旋体鞭毛与运动性。
Biomolecules. 2020 Apr 4;10(4):550. doi: 10.3390/biom10040550.
7
Behaviors and Energy Source of Gliding.滑翔行为与能量来源。
J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00397-19. Print 2019 Oct 1.
9
The mechanism of two-phase motility in the spirochete : Swimming and crawling.螺旋体的两相动力机制:游动和爬行。
Sci Adv. 2018 May 30;4(5):eaar7975. doi: 10.1126/sciadv.aar7975. eCollection 2018 May.

本文引用的文献

3
A hydrodynamic study of the motility of flagellated bacteria.鞭毛细菌运动性的流体动力学研究。
Arch Biochem Biophys. 1963 May;101:249-60. doi: 10.1016/s0003-9861(63)80010-7.
4
The rotary motor of bacterial flagella.细菌鞭毛的旋转马达
Annu Rev Biochem. 2003;72:19-54. doi: 10.1146/annurev.biochem.72.121801.161737. Epub 2002 Dec 11.
7
Polar flagellar motility of the Vibrionaceae.弧菌科的极鞭毛运动性。
Microbiol Mol Biol Rev. 2001 Sep;65(3):445-62, table of contents. doi: 10.1128/MMBR.65.3.445-462.2001.
8
Bacterial swimming speed and rotation rate of bundled flagella.细菌的游动速度和束状鞭毛的旋转速率。
FEMS Microbiol Lett. 2001 May 15;199(1):125-9. doi: 10.1111/j.1574-6968.2001.tb10662.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验