Seo Jinwook, Gordish-Dressman Heather, Hoffman Eric P
Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA.
Bioinformatics. 2006 Apr 1;22(7):808-14. doi: 10.1093/bioinformatics/btk052. Epub 2006 Jan 17.
MOTIVATION: Human clinical projects typically require a priori statistical power analyses. Towards this end, we sought to build a flexible and interactive power analysis tool for microarray studies integrated into our public domain HCE 3.5 software package. We then sought to determine if probe set algorithms or organism type strongly influenced power analysis results. RESULTS: The HCE 3.5 power analysis tool was designed to import any pre-existing Affymetrix microarray project, and interactively test the effects of user-defined definitions of alpha (significance), beta (1-power), sample size and effect size. The tool generates a filter for all probe sets or more focused ontology-based subsets, with or without noise filters that can be used to limit analyses of a future project to appropriately powered probe sets. We studied projects from three organisms (Arabidopsis, rat, human), and three probe set algorithms (MAS5.0, RMA, dChip PM/MM). We found large differences in power results based on probe set algorithm selection and noise filters. RMA provided high sensitivity for low numbers of arrays, but this came at a cost of high false positive results (24% false positive in the human project studied). Our data suggest that a priori power calculations are important for both experimental design in hypothesis testing and hypothesis generation, as well as for the selection of optimized data analysis parameters. AVAILABILITY: The Hierarchical Clustering Explorer 3.5 with the interactive power analysis functions is available at www.cs.umd.edu/hcil/hce or www.cnmcresearch.org/bioinformatics. CONTACT: jseo@cnmcresearch.org
动机:人类临床项目通常需要进行先验统计功效分析。为此,我们试图构建一个灵活且交互式的功效分析工具,用于整合到我们的公共领域HCE 3.5软件包中的微阵列研究。然后,我们试图确定探针集算法或生物体类型是否会对功效分析结果产生强烈影响。 结果:HCE 3.5功效分析工具旨在导入任何现有的Affymetrix微阵列项目,并交互式测试用户定义的α(显著性)、β(1 - 功效)、样本量和效应大小定义的影响。该工具为所有探针集或更聚焦的基于本体的子集生成一个过滤器,有或没有噪声过滤器,可用于将未来项目的分析限制在具有适当功效的探针集上。我们研究了来自三种生物体(拟南芥、大鼠、人类)以及三种探针集算法(MAS5.0、RMA、dChip PM/MM)的项目。我们发现基于探针集算法选择和噪声过滤器的功效结果存在很大差异。RMA对于少量阵列具有高灵敏度,但这是以高假阳性结果为代价的(在所研究的人类项目中假阳性率为24%)。我们的数据表明,先验功效计算对于假设检验中的实验设计和假设生成以及优化数据分析参数的选择都很重要。 可用性:具有交互式功效分析功能的分层聚类浏览器3.5可在www.cs.umd.edu/hcil/hce或www.cnmcresearch.org/bioinformatics上获取。 联系方式:jseo@cnmcresearch.org
Bioinformatics. 2006-4-1
Bioinformatics. 2005-8-1
Bioinformatics. 2005-9-1
Bioinformatics. 2005-11-15
Bioinformatics. 2006-4-1
Appl Microbiol Biotechnol. 2024-12
Plants (Basel). 2022-2-22