文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于微阵列假设检验和生成的交互式功效分析工具。

An interactive power analysis tool for microarray hypothesis testing and generation.

作者信息

Seo Jinwook, Gordish-Dressman Heather, Hoffman Eric P

机构信息

Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA.

出版信息

Bioinformatics. 2006 Apr 1;22(7):808-14. doi: 10.1093/bioinformatics/btk052. Epub 2006 Jan 17.


DOI:10.1093/bioinformatics/btk052
PMID:16418236
Abstract

MOTIVATION: Human clinical projects typically require a priori statistical power analyses. Towards this end, we sought to build a flexible and interactive power analysis tool for microarray studies integrated into our public domain HCE 3.5 software package. We then sought to determine if probe set algorithms or organism type strongly influenced power analysis results. RESULTS: The HCE 3.5 power analysis tool was designed to import any pre-existing Affymetrix microarray project, and interactively test the effects of user-defined definitions of alpha (significance), beta (1-power), sample size and effect size. The tool generates a filter for all probe sets or more focused ontology-based subsets, with or without noise filters that can be used to limit analyses of a future project to appropriately powered probe sets. We studied projects from three organisms (Arabidopsis, rat, human), and three probe set algorithms (MAS5.0, RMA, dChip PM/MM). We found large differences in power results based on probe set algorithm selection and noise filters. RMA provided high sensitivity for low numbers of arrays, but this came at a cost of high false positive results (24% false positive in the human project studied). Our data suggest that a priori power calculations are important for both experimental design in hypothesis testing and hypothesis generation, as well as for the selection of optimized data analysis parameters. AVAILABILITY: The Hierarchical Clustering Explorer 3.5 with the interactive power analysis functions is available at www.cs.umd.edu/hcil/hce or www.cnmcresearch.org/bioinformatics. CONTACT: jseo@cnmcresearch.org

摘要

动机:人类临床项目通常需要进行先验统计功效分析。为此,我们试图构建一个灵活且交互式的功效分析工具,用于整合到我们的公共领域HCE 3.5软件包中的微阵列研究。然后,我们试图确定探针集算法或生物体类型是否会对功效分析结果产生强烈影响。 结果:HCE 3.5功效分析工具旨在导入任何现有的Affymetrix微阵列项目,并交互式测试用户定义的α(显著性)、β(1 - 功效)、样本量和效应大小定义的影响。该工具为所有探针集或更聚焦的基于本体的子集生成一个过滤器,有或没有噪声过滤器,可用于将未来项目的分析限制在具有适当功效的探针集上。我们研究了来自三种生物体(拟南芥、大鼠、人类)以及三种探针集算法(MAS5.0、RMA、dChip PM/MM)的项目。我们发现基于探针集算法选择和噪声过滤器的功效结果存在很大差异。RMA对于少量阵列具有高灵敏度,但这是以高假阳性结果为代价的(在所研究的人类项目中假阳性率为24%)。我们的数据表明,先验功效计算对于假设检验中的实验设计和假设生成以及优化数据分析参数的选择都很重要。 可用性:具有交互式功效分析功能的分层聚类浏览器3.5可在www.cs.umd.edu/hcil/hce或www.cnmcresearch.org/bioinformatics上获取。 联系方式:jseo@cnmcresearch.org

相似文献

[1]
An interactive power analysis tool for microarray hypothesis testing and generation.

Bioinformatics. 2006-4-1

[2]
Interactively optimizing signal-to-noise ratios in expression profiling: project-specific algorithm selection and detection p-value weighting in Affymetrix microarrays.

Bioinformatics. 2004-11-1

[3]
Practical FDR-based sample size calculations in microarray experiments.

Bioinformatics. 2005-8-1

[4]
I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray data.

Bioinformatics. 2007-11-1

[5]
Increased power of microarray analysis by use of an algorithm based on a multivariate procedure.

Bioinformatics. 2005-9-1

[6]
goCluster integrates statistical analysis and functional interpretation of microarray expression data.

Bioinformatics. 2005-9-1

[7]
Calculation of reliable transcript levels of annotated genes on the basis of multiple probe-sets in Affymetrix microarrays.

Acta Biochim Pol. 2009

[8]
DNA microarray data imputation and significance analysis of differential expression.

Bioinformatics. 2005-11-15

[9]
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis.

Bioinformatics. 2007-3-15

[10]
Genetic test bed for feature selection.

Bioinformatics. 2006-4-1

引用本文的文献

[1]
Heavy Metal-Associated (HMA) Domain-Containing Proteins: Insight into Their Features and Roles in Bread Wheat ( L.).

Biology (Basel). 2025-7-5

[2]
CaLAP1 and CaLAP2 orchestrate anthocyanin biosynthesis in the seed coat of Cicer arietinum.

Planta. 2024-7-1

[3]
Investigation of two-pore K (TPK) channels in L. suggests their role in stress response.

Heliyon. 2024-3-13

[4]
Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate.

Appl Microbiol Biotechnol. 2024-12

[5]
Genes in Bread Wheat: Molecular Characterization, Expression Profiling, and Interaction Analyses Indicated Their Diverse Roles during Development and Stress Response.

Int J Mol Sci. 2022-11-28

[6]
Insight into the Roles of Proline-Rich Extensin-like Receptor Protein Kinases of Bread Wheat ( L.).

Life (Basel). 2022-6-23

[7]
Molecular Characterization, Evolutionary Analysis, and Expression Profiling of Genes in Important Cereals.

Plants (Basel). 2022-3-29

[8]
Investigation of Roles of Genes during Development and Stress Response in Bread Wheat.

Plants (Basel). 2022-2-22

[9]
Molecular Characterization Revealed the Role of Thaumatin-Like Proteins of Bread Wheat in Stress Response.

Front Plant Sci. 2022-1-11

[10]
Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera.

BMC Genomics. 2021-10-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索