文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

I/NI-要求排除无信息基因:一种用于微阵列数据的高效筛选工具。

I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray data.

作者信息

Talloen Willem, Clevert Djork-Arné, Hochreiter Sepp, Amaratunga Dhammika, Bijnens Luc, Kass Stefan, Göhlmann Hinrich W H

机构信息

Johnson & Johnson Pharmaceutical Research & Development, Division of Janssen Pharmaceutica n.v., Beerse, Belgium.

出版信息

Bioinformatics. 2007 Nov 1;23(21):2897-902. doi: 10.1093/bioinformatics/btm478. Epub 2007 Oct 5.


DOI:10.1093/bioinformatics/btm478
PMID:17921172
Abstract

MOTIVATION: DNA microarray technology typically generates many measurements of which only a relatively small subset is informative for the interpretation of the experiment. To avoid false positive results, it is therefore critical to select the informative genes from the large noisy data before the actual analysis. Most currently available filtering techniques are supervised and therefore suffer from a potential risk of overfitting. The unsupervised filtering techniques, on the other hand, are either not very efficient or too stringent as they may mix up signal with noise. We propose to use the multiple probes measuring the same target mRNA as repeated measures to quantify the signal-to-noise ratio of that specific probe set. A Bayesian factor analysis with specifically chosen prior settings, which models this probe level information, is providing an objective feature filtering technique, named informative/non-informative calls (I/NI calls). RESULTS: Based on 30 real-life data sets (including various human, rat, mice and Arabidopsis studies) and a spiked-in data set, it is shown that I/NI calls is highly effective, with exclusion rates ranging from 70% to 99%. Consequently, it offers a critical solution to the curse of high-dimensionality in the analysis of microarray data. AVAILABILITY: This filtering approach is publicly available as a function implemented in the R package FARMS (www.bioinf.jku.at/software/farms/farms.html).

摘要

动机:DNA微阵列技术通常会产生大量测量数据,而其中只有相对较小的一部分子集对于实验解释具有信息价值。为避免假阳性结果,因此在实际分析之前从大量有噪声的数据中选择信息性基因至关重要。目前大多数可用的过滤技术都是有监督的,因此存在过拟合的潜在风险。另一方面,无监督过滤技术要么效率不高,要么过于严格,因为它们可能会将信号与噪声混淆。我们建议使用测量同一目标mRNA的多个探针作为重复测量来量化该特定探针集的信噪比。一种具有专门选择的先验设置的贝叶斯因子分析,它对这种探针水平信息进行建模,提供了一种客观的特征过滤技术,称为信息性/非信息性调用(I/NI调用)。 结果:基于30个实际数据集(包括各种人类、大鼠、小鼠和拟南芥研究)和一个掺入数据集,结果表明I/NI调用非常有效,排除率在70%至99%之间。因此,它为微阵列数据分析中的高维诅咒提供了关键解决方案。 可用性:这种过滤方法作为R包FARMS(www.bioinf.jku.at/software/farms/farms.html)中实现的一个函数公开可用。

相似文献

[1]
I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray data.

Bioinformatics. 2007-11-1

[2]
goCluster integrates statistical analysis and functional interpretation of microarray expression data.

Bioinformatics. 2005-9-1

[3]
Clustering of change patterns using Fourier coefficients.

Bioinformatics. 2008-1-15

[4]
A new summarization method for Affymetrix probe level data.

Bioinformatics. 2006-4-15

[5]
A mixture model with random-effects components for clustering correlated gene-expression profiles.

Bioinformatics. 2006-7-15

[6]
An interactive power analysis tool for microarray hypothesis testing and generation.

Bioinformatics. 2006-4-1

[7]
Classification based upon gene expression data: bias and precision of error rates.

Bioinformatics. 2007-6-1

[8]
Graph-based consensus clustering for class discovery from gene expression data.

Bioinformatics. 2007-11-1

[9]
A pattern recognition approach to infer time-lagged genetic interactions.

Bioinformatics. 2008-5-1

[10]
Informative or noninformative calls for gene expression: a latent variable approach.

Stat Appl Genet Mol Biol. 2010

引用本文的文献

[1]
Feature selection via robust weighted score for high dimensional binary class-imbalanced gene expression data.

Heliyon. 2024-9-30

[2]
Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning.

Brief Bioinform. 2023-1-19

[3]
Robust proportional overlapping analysis for feature selection in binary classification within functional genomic experiments.

PeerJ Comput Sci. 2021-6-1

[4]
Transcriptional drug repositioning and cheminformatics approach for differentiation therapy of leukaemia cells.

Sci Rep. 2021-6-15

[5]
H-RACS: a handy tool to rank anti-cancer synergistic drugs.

Aging (Albany NY). 2020-11-10

[6]
Normalization Methods for the Analysis of Unbalanced Transcriptome Data: A Review.

Front Bioeng Biotechnol. 2019-11-26

[7]
DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.

Bioinformatics. 2018-5-1

[8]
A random effects model for the identification of differential splicing (REIDS) using exon and HTA arrays.

BMC Bioinformatics. 2017-5-25

[9]
Covariation of Peptide Abundances Accurately Reflects Protein Concentration Differences.

Mol Cell Proteomics. 2017-5

[10]
Immune signatures of protective spleen memory CD8 T cells.

Sci Rep. 2016-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索