Plaggenborg Rainer, Overhage Jörg, Loos Andrea, Archer John A C, Lessard Philip, Sinskey Anthony J, Steinbüchel Alexander, Priefert Horst
Institut für Molekulare Mikrobiologie und Biotechnologie der Westfälischen Wilhelms-Universität Münster, Corrensstr. 3, 48149 Münster, Germany.
Appl Microbiol Biotechnol. 2006 Oct;72(4):745-55. doi: 10.1007/s00253-005-0302-5. Epub 2006 Jan 19.
The potential of two Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol was investigated. Genome sequence data of Rhodococcus sp. I24 suggested a coenzyme A-dependent, non-beta-oxidative pathway for ferulic acid bioconversion, which involves feruloyl-CoA synthetase (Fcs), enoyl-CoA hydratase/aldolase (Ech), and vanillin dehydrogenase (Vdh). This pathway was proven for Rhodococcus opacus PD630 by physiological characterization of knockout mutants. However, expression and functional characterization of corresponding structural genes from I24 suggested that degradation of ferulic acid in this strain proceeds via a beta-oxidative pathway. The vanillin precursor eugenol facilitated growth of I24 but not of PD630. Coniferyl aldehyde was an intermediate of eugenol degradation by I24. Since the genome sequence of I24 is devoid of eugenol hydroxylase homologous genes (ehyAB), eugenol bioconversion is most probably initiated by a new step in this bacterium. To establish eugenol bioconversion in PD630, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was expressed in PD630 together with coniferyl alcohol dehydrogenase (calA) and coniferyl aldehyde dehydrogenase (calB) genes from Pseudomonas sp. HR199. The recombinant strain converted eugenol to ferulic acid. The obtained data suggest that genetically engineered strains of I24 and PD630 are suitable candidates for vanillin production from eugenol.
研究了两株红球菌菌株从阿魏酸和丁香酚生物技术生产香草醛的潜力。红球菌属I24的基因组序列数据表明存在一条阿魏酸生物转化的辅酶A依赖性非β-氧化途径,该途径涉及阿魏酰辅酶A合成酶(Fcs)、烯酰辅酶A水合酶/醛缩酶(Ech)和香草醛脱氢酶(Vdh)。通过敲除突变体的生理特性验证了该途径存在于不透明红球菌PD630中。然而,来自I24的相应结构基因的表达和功能特性表明,该菌株中阿魏酸的降解是通过β-氧化途径进行的。香草醛前体丁香酚促进了I24的生长,但未促进PD630的生长。松柏醛是I24降解丁香酚的中间体。由于I24的基因组序列中缺乏丁香酚羟化酶同源基因(ehyAB),丁香酚的生物转化很可能在该细菌中由一个新步骤启动。为了在PD630中建立丁香酚生物转化,将简单青霉CBS 170.90的香草醇氧化酶基因(vaoA)与来自假单胞菌属HR199的松柏醇脱氢酶(calA)和松柏醛脱氢酶(calB)基因一起在PD630中表达。重组菌株将丁香酚转化为阿魏酸。获得的数据表明,I24和PD630的基因工程菌株是从丁香酚生产香草醛的合适候选菌株。