Kalmykov Yu P, Coffey W T, Titov S V
Groupe de Physique Moléculaire, MEPS, Université de Perpignan, 52, Avenue Paul Alduy, 66860 Perpignan Cedex, France.
J Chem Phys. 2006 Jan 14;124(2):024107. doi: 10.1063/1.2140281.
The translational Brownian motion in a (2-4) double-well potential is considered. The escape rate, the position correlation function and correlation time, and the generalized susceptibility are evaluated from the solution of the underlying Langevin equation by using the matrix-continued fraction method. The escape rate and the correlation time are compared with the Kramers theory of the escape rate of a Brownian particle from a potential well as extended by Mel'nikov and Meshkov [J. Chem. Phys. 85, 1018 (1986)]. It is shown that in the low-temperature limit, the universal Mel'nikov and Meshkov expression for the escape rate provides a good estimate of both escape rate and inverse position correlation time for all values of the dissipation including the very low damping (VLD), very high damping (VHD), and turnover regimes. Moreover, for low barriers, where the Mel'nikov and Meshkov method is not applicable, analytic equations for the correlation time in the VLD and VHD limits are derived.
考虑了在(2 - 4)双阱势中的平移布朗运动。通过使用矩阵连分数法,从基础朗之万方程的解中评估逃逸率、位置相关函数和相关时间,以及广义磁化率。将逃逸率和相关时间与由梅尔尼科夫和梅什科夫扩展的布朗粒子从势阱逃逸率的克拉默斯理论[《化学物理杂志》85, 1018 (1986)]进行了比较。结果表明,在低温极限下,逃逸率的通用梅尔尼科夫和梅什科夫表达式为包括极低阻尼(VLD)、极高阻尼(VHD)和转变区域在内的所有耗散值的逃逸率和反位置相关时间提供了良好的估计。此外,对于梅尔尼科夫和梅什科夫方法不适用的低势垒情况,推导了VLD和VHD极限下相关时间的解析方程。