Lavacchi Laura, Dalton Benjamin A, Netz Roland R
Fachbereich Physik, Freie Universität Berlin, Berlin, 14195, Germany.
Eur Phys J E Soft Matter. 2025 May 22;48(4-5):26. doi: 10.1140/epje/s10189-025-00488-1.
Barrier-crossing processes in nature are often non-Markovian and typically occur over an asymmetric double-well free-energy landscape. However, most theories and numerical studies on barrier-crossing rates assume symmetric free-energy profiles. Here, we use a one-dimensional generalized Langevin equation (GLE) to investigate non-Markovian reaction kinetics in asymmetric double-well potentials. We derive a general formula, confirmed by extensive simulations, that accurately predicts mean first-passage times from well to barrier top in an asymmetric double-well potential with arbitrary memory time and reaction coordinate mass. We extend our formalism to non-equilibrium non-Markovian systems, confirming its broad applicability to equilibrium and non-equilibrium systems in biology, chemistry, and physics.
自然界中的跨越势垒过程通常是非马尔可夫的,并且通常发生在不对称的双阱自由能景观上。然而,大多数关于跨越势垒速率的理论和数值研究都假设自由能分布是对称的。在这里,我们使用一维广义朗之万方程(GLE)来研究不对称双阱势中的非马尔可夫反应动力学。我们推导出一个通用公式,该公式通过广泛的模拟得到证实,能够准确预测具有任意记忆时间和反应坐标质量的不对称双阱势中从阱到势垒顶部的平均首次通过时间。我们将我们的形式主义扩展到非平衡非马尔可夫系统,证实了它在生物学、化学和物理学中的平衡和非平衡系统中的广泛适用性。