Brunham Liam R, Singaraja Roshni R, Pape Terry D, Kejariwal Anish, Thomas Paul D, Hayden Michael R
Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia.
PLoS Genet. 2005 Dec;1(6):e83. doi: 10.1371/journal.pgen.0010083. Epub 2005 Dec 30.
The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.
人类基因组估计包含10万至30万个DNA变体,这些变体会改变编码蛋白中的氨基酸。然而,我们预测这些变体中哪些具有功能重要性的能力是有限的。我们采用生物信息学方法来确定ABCA1基因中遗传变异的功能重要性,ABCA1基因是一种对高密度脂蛋白胆固醇代谢至关重要的胆固醇转运蛋白。为了预测该基因中每个编码单核苷酸多态性和突变的功能后果,我们计算了每个变体的替代位置特异性进化保守得分,该得分考虑了进化相关蛋白之间的位点特异性变异。为了通过实验测试生物信息学预测,我们通过检查稳定转染了ABCA1等位基因的细胞系引发胆固醇流出的能力,评估了这些序列变体的生化后果。我们的生物信息学方法正确预测了我们评估的超过94%的自然发生变体的功能影响。生物信息学预测与ABCA1突变的功能损害程度显著相关(r2 = 0.62,p = 0.0008)。这些结果使我们能够确定遗传变异对ABCA1功能的影响,并表明我们使用的计算机进化方法通常可能是预测DNA变异对基因功能影响的有用工具。此外,我们的数据表明,考虑正选择模式以及负选择模式(如进化保守性)可能会提高我们预测氨基酸变异功能影响的能力。