Challinor A J, Wheeler T R, Slingo J M, Hemming D
Department of Meteorology, The University of Reading, PO Box 243, Earley Gate, Reading RG6 6BB, UK.
Philos Trans R Soc Lond B Biol Sci. 2005 Nov 29;360(1463):2085-94. doi: 10.1098/rstb.2005.1740.
The impacts of climate change on crop productivity are often assessed using simulations from a numerical climate model as an input to a crop simulation model. The precision of these predictions reflects the uncertainty in both models. We examined how uncertainty in a climate (HadAM3) and crop General Large-Area Model (GLAM) for annual crops model affects the mean and standard deviation of crop yield simulations in present and doubled carbon dioxide (CO2) climates by perturbation of parameters in each model. The climate sensitivity parameter (gamma, the equilibrium response of global mean surface temperature to doubled CO2) was used to define the control climate. Observed 1966-1989 mean yields of groundnut (Arachis hypogaea L.) in India were simulated well by the crop model using the control climate and climates with values of gamma near the control value. The simulations were used to measure the contribution to uncertainty of key crop and climate model parameters. The standard deviation of yield was more affected by perturbation of climate parameters than crop model parameters in both the present-day and doubled CO2 climates. Climate uncertainty was higher in the doubled CO2 climate than in the present-day climate. Crop transpiration efficiency was key to crop model uncertainty in both present-day and doubled CO2 climates. The response of crop development to mean temperature contributed little uncertainty in the present-day simulations but was among the largest contributors under doubled CO2. The ensemble methods used here to quantify physical and biological uncertainty offer a method to improve model estimates of the impacts of climate change.
气候变化对作物生产力的影响通常通过将数值气候模型的模拟结果作为作物模拟模型的输入来评估。这些预测的精度反映了两个模型中的不确定性。我们通过扰动每个模型中的参数,研究了用于一年生作物的气候(HadAM3)模型和作物通用大面积模型(GLAM)中的不确定性如何影响当前和二氧化碳浓度翻倍气候下作物产量模拟的均值和标准差。气候敏感性参数(γ,全球平均地表温度对二氧化碳浓度翻倍的平衡响应)用于定义对照气候。利用对照气候以及γ值接近对照值的气候,作物模型很好地模拟了1966 - 1989年印度花生(Arachis hypogaea L.)的实测平均产量。这些模拟用于衡量关键作物和气候模型参数对不确定性的贡献。在当前和二氧化碳浓度翻倍的气候条件下,产量标准差受气候参数扰动的影响大于作物模型参数。二氧化碳浓度翻倍气候下的气候不确定性高于当前气候。作物蒸腾效率是当前和二氧化碳浓度翻倍气候下作物模型不确定性的关键因素。在当前模拟中,作物发育对平均温度的响应贡献的不确定性较小,但在二氧化碳浓度翻倍的情况下是最大的贡献因素之一。这里用于量化物理和生物不确定性的集合方法提供了一种改进气候变化影响模型估计的方法。