Suppr超能文献

低电导间隙连接介导秀丽隐杆线虫体壁肌肉细胞中的特异性电偶联。

Low conductance gap junctions mediate specific electrical coupling in body-wall muscle cells of Caenorhabditis elegans.

作者信息

Liu Qiang, Chen Bojun, Gaier Eric, Joshi Jaya, Wang Zhao-Wen

机构信息

Department of Neuroscience, University of Connecticut Health Center, Connecticut 06030, USA.

出版信息

J Biol Chem. 2006 Mar 24;281(12):7881-9. doi: 10.1074/jbc.M512382200. Epub 2006 Jan 24.

Abstract

Invertebrate innexins and their mammalian homologues, the pannexins, are gap junction proteins. Although a large number of such proteins have been identified, few of the gap junctions that they form have been characterized to provide combined information of biophysical properties, coupling pattern, and molecular compositions. We adapted the dual whole cell voltage clamp technique to in situ analysis of electrical coupling in Caenorhabditis elegans body-wall muscle. We found that body-wall muscle cells were electrically coupled in a highly organized and specific pattern. The coupling was characterized by small (350 pS or less) junctional conductance (G(j)), which showed a bell-shaped relationship with junctional potential (V(j)) but was independent of membrane potential (V(m)). Injection of currents comparable to the junctional current (I(j)) into body-wall muscle cells caused significant depolarization, suggesting important functional relevance. The innexin UNC-9 appeared to be a key component of the gap junctions. Both Myc- and green fluorescent protein-tagged UNC-9 was localized to muscle intercellular junctions. G(j) was greatly inhibited in unc-9(fc16), a putative null mutant. Specific inhibition of UNC-9 function in muscle cells reduced locomotion velocity. Despite UNC-9 expression in both motor neurons and body-wall muscle cells, analyses of miniature and evoked postsynaptic currents in the unc-9 mutant showed normal neuromuscular transmission. These analyses provide a relatively detailed description of innexin-based gap junctions in a native tissue and suggest that innexin-based small conductance gap junctions can play an important role in processes such as locomotion.

摘要

无脊椎动物的连接蛋白及其哺乳动物同源物——泛连接蛋白,都是间隙连接蛋白。尽管已经鉴定出大量此类蛋白,但它们所形成的间隙连接中,很少有能同时提供生物物理特性、偶联模式和分子组成等综合信息的。我们将双全细胞电压钳技术应用于秀丽隐杆线虫体壁肌肉电偶联的原位分析。我们发现,体壁肌肉细胞以高度有序且特定的模式进行电偶联。这种偶联的特征是具有小的(350皮秒或更小)连接电导(G(j)),它与连接电位(V(j))呈钟形关系,但与膜电位(V(m))无关。向体壁肌肉细胞注入与连接电流(I(j))相当的电流会导致明显的去极化,这表明其具有重要的功能相关性。连接蛋白UNC-9似乎是间隙连接的关键组成部分。带有Myc标签和绿色荧光蛋白标签的UNC-9都定位于肌肉细胞间连接。在假定的无功能突变体unc-9(fc16)中,G(j)受到极大抑制。对肌肉细胞中UNC-9功能的特异性抑制会降低运动速度。尽管UNC-9在运动神经元和体壁肌肉细胞中都有表达,但对unc-9突变体中微小和诱发的突触后电流的分析表明神经肌肉传递正常。这些分析相对详细地描述了天然组织中基于连接蛋白的间隙连接,并表明基于连接蛋白的小电导间隙连接在诸如运动等过程中可能发挥重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验