Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China.
Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China.
Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4493-E4502. doi: 10.1073/pnas.1717022115. Epub 2018 Apr 23.
Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of and higher model organisms, converging principles govern coordinated locomotion.
来自大脑的下行信号在控制和调节运动运动学中起着关键作用。在神经系统中,下行 AVB 运动前神经元与执行前进运动的 B 型运动神经元仅形成缝隙连接。我们结合遗传分析、光遗传学操作、钙成像和计算建模来阐明 AVB-B 缝隙连接在前进运动中的功能。首先,我们发现一些 B 型运动神经元产生节律性活动,构成分布式振荡器。其次,AVB 运动前神经元利用其电输入驱动 B 型运动神经元动力学的分岔,触发它们从静止状态到振荡活动的转变。第三,相邻 B 型运动神经元之间的本体感受耦合使身体振荡器的频率同步,迫使连贯的弯曲波传播。尽管 和更高等模式生物的运动回路在解剖结构上存在很大差异,但协调运动的原则是一致的。