Rouveirol C, Stransky N, Hupé Ph, Rosa Ph La, Viara E, Barillot E, Radvanyi F
LRI, UMR CNRS 8623, Université Paris Sud, bât 490 91405 Orsay cedex, France.
Bioinformatics. 2006 Apr 1;22(7):849-56. doi: 10.1093/bioinformatics/btl004. Epub 2006 Jan 24.
The identification of recurrent genomic alterations can provide insight into the initiation and progression of genetic diseases, such as cancer. Array-CGH can identify chromosomal regions that have been gained or lost, with a resolution of approximately 1 mb, for the cutting-edge techniques. The extraction of discrete profiles from raw array-CGH data has been studied extensively, but subsequent steps in the analysis require flexible, efficient algorithms, particularly if the number of available profiles exceeds a few tens or the number of array probes exceeds a few thousands.
We propose two algorithms for computing minimal and minimal constrained regions of gain and loss from discretized CGH profiles. The second of these algorithms can handle additional constraints describing relevant regions of copy number change. We have validated these algorithms on two public array-CGH datasets.
From the authors, upon request.
Supplementary data are available at Bioinformatics online.
复发性基因组改变的识别能够为深入了解诸如癌症等遗传疾病的发生和发展提供线索。对于前沿技术而言,阵列比较基因组杂交(Array-CGH)能够识别出获得或缺失的染色体区域,分辨率约为1兆碱基。从原始阵列比较基因组杂交数据中提取离散图谱的研究已经相当广泛,但后续的分析步骤需要灵活、高效的算法,特别是当可用图谱数量超过几十或阵列探针数量超过几千时。
我们提出了两种算法,用于从离散化的比较基因组杂交图谱中计算获得和缺失的最小及最小约束区域。其中第二种算法能够处理描述拷贝数变化相关区域的附加约束。我们已在两个公开的阵列比较基因组杂交数据集上验证了这些算法。
如有需要可向作者索取。
补充数据可在《生物信息学》在线获取。