Suppr超能文献

从阵列比较基因组杂交(array-CGH)数据计算复发性最小基因组改变

Computation of recurrent minimal genomic alterations from array-CGH data.

作者信息

Rouveirol C, Stransky N, Hupé Ph, Rosa Ph La, Viara E, Barillot E, Radvanyi F

机构信息

LRI, UMR CNRS 8623, Université Paris Sud, bât 490 91405 Orsay cedex, France.

出版信息

Bioinformatics. 2006 Apr 1;22(7):849-56. doi: 10.1093/bioinformatics/btl004. Epub 2006 Jan 24.

Abstract

MOTIVATION

The identification of recurrent genomic alterations can provide insight into the initiation and progression of genetic diseases, such as cancer. Array-CGH can identify chromosomal regions that have been gained or lost, with a resolution of approximately 1 mb, for the cutting-edge techniques. The extraction of discrete profiles from raw array-CGH data has been studied extensively, but subsequent steps in the analysis require flexible, efficient algorithms, particularly if the number of available profiles exceeds a few tens or the number of array probes exceeds a few thousands.

RESULTS

We propose two algorithms for computing minimal and minimal constrained regions of gain and loss from discretized CGH profiles. The second of these algorithms can handle additional constraints describing relevant regions of copy number change. We have validated these algorithms on two public array-CGH datasets.

AVAILABILITY

From the authors, upon request.

CONTACT

celine@lri.fr

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

复发性基因组改变的识别能够为深入了解诸如癌症等遗传疾病的发生和发展提供线索。对于前沿技术而言,阵列比较基因组杂交(Array-CGH)能够识别出获得或缺失的染色体区域,分辨率约为1兆碱基。从原始阵列比较基因组杂交数据中提取离散图谱的研究已经相当广泛,但后续的分析步骤需要灵活、高效的算法,特别是当可用图谱数量超过几十或阵列探针数量超过几千时。

结果

我们提出了两种算法,用于从离散化的比较基因组杂交图谱中计算获得和缺失的最小及最小约束区域。其中第二种算法能够处理描述拷贝数变化相关区域的附加约束。我们已在两个公开的阵列比较基因组杂交数据集上验证了这些算法。

可用性

如有需要可向作者索取。

联系方式

celine@lri.fr

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验