Palmer Laura K, Rannels Sharon L, Kimball Scot R, Jefferson Leonard S, Keil Ralph L
Dept. of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA.
Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1267-75. doi: 10.1152/ajpendo.00463.2005. Epub 2006 Jan 24.
Volatile anesthetics are essential for modern medical practice, but sites and mechanisms of action for any of their numerous cellular effects remain largely unknown. Previous studies with yeast showed that volatile anesthetics induce nutrient-dependent inhibition of growth through mechanisms involving inhibition of mRNA translation. Studies herein show that the volatile anesthetic halothane inhibits protein synthesis in perfused rat liver at doses ranging from 2 to 6%. A marked disaggregation of polysomes occurs, indicating that inhibition of translation initiation plays a key role. Dose- and time-dependent alterations that decrease the function of a variety of translation initiation processes are observed. At 6% halothane, a rapid and persistent increase in phosphorylation of the alpha-subunit of eukaryotic translation initiation factor (eIF)2 occurs. This is accompanied by inhibition of activity of the guanine nucleotide exchange factor eIF2B that is responsible for GDP-GTP exchange on eIF2. At lower doses, neither eIF2alpha phosphorylation nor eIF2B activity is altered. After extended exposure to 6% halothane, alterations in two separate responses regulated by the target of rapamycin pathway occur: 1) redistribution of eIF4E from its translation-stimulatory association with eIF4G to its translation-inactive complex with eIF4E-binding protein-1; and 2) decreased phosphorylation of ribosomal protein S6 (rpS6) with a corresponding decrease in active forms of a kinase that phosphorylates rpS6 (p70(S6K1)). Changes in the association of eIF4E and eIF4G are observed only after extended exposure to low anesthetic doses. Thus dose- and time-dependent alterations in multiple processes permit liver cells to adapt translation to variable degrees and duration of stress imposed by anesthetic exposure.
挥发性麻醉剂对现代医学实践至关重要,但其众多细胞效应的作用位点和机制仍大多未知。先前对酵母的研究表明,挥发性麻醉剂通过抑制mRNA翻译的机制诱导营养物质依赖性生长抑制。本文研究表明,挥发性麻醉剂氟烷在2%至6%的剂量范围内抑制灌注大鼠肝脏中的蛋白质合成。多核糖体出现明显解聚,表明翻译起始的抑制起关键作用。观察到剂量和时间依赖性改变,这些改变降低了多种翻译起始过程的功能。在6%氟烷浓度下,真核翻译起始因子(eIF)2的α亚基磷酸化迅速且持续增加。这伴随着鸟嘌呤核苷酸交换因子eIF2B活性的抑制,eIF2B负责eIF2上的GDP-GTP交换。在较低剂量下,eIF2α磷酸化和eIF2B活性均未改变。长时间暴露于6%氟烷后,雷帕霉素靶蛋白途径调控的两种不同反应发生改变:1)eIF4E从其与eIF4G的翻译刺激结合重新分布到其与eIF4E结合蛋白-1的翻译无活性复合物;2)核糖体蛋白S6(rpS6)磷酸化减少,同时磷酸化rpS6的激酶(p70(S6K1))的活性形式相应减少。仅在长时间暴露于低麻醉剂量后才观察到eIF4E和eIF4G结合的变化。因此,多个过程的剂量和时间依赖性改变使肝细胞能够根据麻醉暴露所施加的应激程度和持续时间对翻译进行不同程度的适应。