Suppr超能文献

二氯甲烷癌症风险的修订评估:第一部分 小鼠中的贝叶斯PBPK和剂量反应模型

Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.

作者信息

Marino Dale J, Clewell Harvey J, Gentry P Robinan, Covington Tammie R, Hack C Eric, David Raymond M, Morgott David A

机构信息

Health, Safety and Environment, Eastman Kodak Company, Rochester, NY 14652, USA.

出版信息

Regul Toxicol Pharmacol. 2006 Jun;45(1):44-54. doi: 10.1016/j.yrtph.2005.12.007. Epub 2006 Jan 25.

Abstract

The current USEPA cancer risk assessment for dichloromethane (DCM) is based on deterministic physiologically based pharmacokinetic (PBPK) modeling involving comparative metabolism of DCM by the GST pathway in the lung and liver of humans and mice. Recent advances in PBPK modeling include probabilistic methods and, in particular, Bayesian inference to quantitatively address variability and uncertainty separately. Although Bayesian analysis of human PBPK models has been published, no such efforts have been reported specifically addressing the mouse, apart from results included in the OSHA final rule on DCM. Certain aspects of the OSHA model, however, are not consistent with current approaches or with the USEPA's current DCM cancer risk assessment. Therefore, Bayesian analysis of the mouse PBPK model and dose-response modeling was undertaken to support development of an improved cancer risk assessment for DCM. A hierarchical population model was developed and prior parameter distributions were selected to reflect parameter values that were considered the most appropriate and best available. Bayesian modeling was conducted using MCSim, a publicly available software program for Markov Chain Monte Carlo analysis. Mean posterior values from the calibrated model were used to develop internal dose metrics, i.e., mg DCM metabolized by the GST pathway/L tissue/day in the lung and liver using exposure concentrations and results from the NTP mouse bioassay, consistent with the approach used by the USEPA for its current DCM cancer risk assessment. Internal dose metrics were 3- to 4-fold higher than those that support the current USEPA IRIS assessment. A decrease of similar magnitude was also noted in dose-response modeling results. These results show that the Bayesian PBPK model in the mouse provides an improved basis for a cancer risk assessment of DCM.

摘要

美国环境保护局(USEPA)目前对二氯甲烷(DCM)的癌症风险评估基于确定性的生理药代动力学(PBPK)模型,该模型涉及人类和小鼠肺与肝脏中通过谷胱甘肽S-转移酶(GST)途径对DCM的比较代谢。PBPK建模的最新进展包括概率方法,特别是贝叶斯推理,以分别定量处理变异性和不确定性。尽管已发表了对人类PBPK模型的贝叶斯分析,但除了职业安全与健康管理局(OSHA)关于DCM的最终规则中包含的结果外,尚未有专门针对小鼠的此类研究报道。然而,OSHA模型的某些方面与当前方法或USEPA目前的DCM癌症风险评估不一致。因此,对小鼠PBPK模型进行贝叶斯分析和剂量反应建模,以支持开发改进的DCM癌症风险评估。开发了一个分层总体模型,并选择了先验参数分布以反映被认为最合适和最可用的参数值。使用MCSim进行贝叶斯建模,MCSim是一个用于马尔可夫链蒙特卡罗分析的公开可用软件程序。校准模型的后验均值用于开发内部剂量指标,即使用暴露浓度和美国国家毒理学计划(NTP)小鼠生物测定结果,计算肺和肝脏中通过GST途径代谢的DCM毫克数/组织/天,这与USEPA目前进行DCM癌症风险评估所采用的方法一致。内部剂量指标比支持USEPA当前综合风险信息系统(IRIS)评估的指标高3至4倍。在剂量反应建模结果中也注意到了类似幅度的降低。这些结果表明,小鼠中的贝叶斯PBPK模型为DCM的癌症风险评估提供了改进的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验