Jia Yuntao, Hoberock Jared, Garland Michael, Hart John C
University of Illinois, IL, USA.
IEEE Trans Vis Comput Graph. 2008 Nov-Dec;14(6):1285-92. doi: 10.1109/TVCG.2008.151.
This paper proposes novel methods for visualizing specifically the large power-law graphs that arise in sociology and the sciences. In such cases a large portion of edges can be shown to be less important and removed while preserving component connectedness and other features (e.g. cliques) to more clearly reveal the network's underlying connection pathways. This simplification approach deterministically filters (instead of clustering) the graph to retain important node and edge semantics, and works both automatically and interactively. The improved graph filtering and layout is combined with a novel computer graphics anisotropic shading of the dense crisscrossing array of edges to yield a full social network and scale-free graph visualization system. Both quantitative analysis and visual results demonstrate the effectiveness of this approach.
本文提出了专门用于可视化社会学和科学领域中出现的大型幂律图的新颖方法。在这种情况下,可以证明很大一部分边不太重要,可以在保留组件连通性和其他特征(例如团)的同时将其删除,以便更清晰地揭示网络的潜在连接路径。这种简化方法确定性地过滤(而不是聚类)图以保留重要的节点和边语义,并且可以自动和交互式地工作。改进的图过滤和布局与一种新颖的计算机图形学相结合,对密集交叉的边阵列进行各向异性着色,从而产生一个完整的社交网络和无标度图可视化系统。定量分析和视觉结果都证明了这种方法的有效性。