Suppr超能文献

运用基于统计和知识的方法进行基于文献的发现。

Using statistical and knowledge-based approaches for literature-based discovery.

作者信息

Yetisgen-Yildiz Meliha, Pratt Wanda

机构信息

Information School, University of Washington, Seattle, WA, USA.

出版信息

J Biomed Inform. 2006 Dec;39(6):600-11. doi: 10.1016/j.jbi.2005.11.010. Epub 2006 Jan 4.

Abstract

The explosive growth in biomedical literature has made it difficult for researchers to keep up with advancements, even in their own narrow specializations. While researchers formulate new hypotheses to test, it is very important for them to identify connections to their work from other parts of the literature. However, the current volume of information has become a great barrier for this task and new automated tools are needed to help researchers identify new knowledge that bridges gaps across distinct sections of the literature. In this paper, we present a literature-based discovery system called LitLinker that incorporates knowledge-based methodologies with a statistical method to mine the biomedical literature for new, potentially causal connections between biomedical terms. We demonstrate LitLinker's ability to capture novel and interesting connections between diseases and chemicals, drugs, genes, or molecular sequences from the published biomedical literature. We also evaluate LitLinker's performance by using the information retrieval metrics of precision and recall.

摘要

生物医学文献的爆炸式增长使得研究人员难以跟上进展,即使是在他们自己狭窄的专业领域。当研究人员提出新的假设进行测试时,从文献的其他部分识别与他们工作的联系对他们来说非常重要。然而,当前的信息量已成为这项任务的巨大障碍,需要新的自动化工具来帮助研究人员识别跨越文献不同部分的差距的新知识。在本文中,我们提出了一种基于文献的发现系统LitLinker,它将基于知识的方法与统计方法相结合,以挖掘生物医学文献中生物医学术语之间新的、潜在的因果联系。我们展示了LitLinker从已发表的生物医学文献中捕捉疾病与化学物质、药物、基因或分子序列之间新颖有趣联系的能力。我们还通过使用精确率和召回率等信息检索指标来评估LitLinker的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验