Suppr超能文献

治疗性流行病学数据库研究中未测量混杂因素的敏感性分析与外部调整

Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics.

作者信息

Schneeweiss Sebastian

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02120, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2006 May;15(5):291-303. doi: 10.1002/pds.1200.

Abstract

BACKGROUND

Large health care utilization databases are frequently used to analyze unintended effects of prescription drugs and biologics. Confounders that require detailed information on clinical parameters, lifestyle, or over-the-counter medications are often not measured in such datasets, causing residual confounding bias.

OBJECTIVE

This paper provides a systematic approach to sensitivity analyses to investigate the impact of residual confounding in pharmacoepidemiologic studies that use health care utilization databases.

METHODS

Four basic approaches to sensitivity analysis were identified: (1) sensitivity analyses based on an array of informed assumptions; (2) analyses to identify the strength of residual confounding that would be necessary to explain an observed drug-outcome association; (3) external adjustment of a drug-outcome association given additional information on single binary confounders from survey data using algebraic solutions; (4) external adjustment considering the joint distribution of multiple confounders of any distribution from external sources of information using propensity score calibration.

CONCLUSION

Sensitivity analyses and external adjustments can improve our understanding of the effects of drugs and biologics in epidemiologic database studies. With the availability of easy-to-apply techniques, sensitivity analyses should be used more frequently, substituting qualitative discussions of residual confounding.

摘要

背景

大型医疗保健利用数据库常用于分析处方药和生物制品的意外影响。在此类数据集中,通常无法测量那些需要详细临床参数、生活方式或非处方药信息的混杂因素,从而导致残留混杂偏倚。

目的

本文提供一种系统的敏感性分析方法,以研究在使用医疗保健利用数据库的药物流行病学研究中残留混杂的影响。

方法

确定了四种基本的敏感性分析方法:(1)基于一系列有根据假设的敏感性分析;(2)确定解释观察到的药物-结局关联所需的残留混杂强度的分析;(3)利用代数解法,根据来自调查数据的单个二元混杂因素的额外信息,对药物-结局关联进行外部调整;(4)使用倾向得分校准,考虑来自外部信息源的任何分布的多个混杂因素的联合分布进行外部调整。

结论

敏感性分析和外部调整可以增进我们对药物和生物制品在流行病学数据库研究中效果的理解。随着易于应用的技术的出现,应更频繁地使用敏感性分析,以替代对残留混杂的定性讨论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验