Stürmer Til, Glynn Robert J, Rothman Kenneth J, Avorn Jerry, Schneeweiss Sebastian
Divisions of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Med Care. 2007 Oct;45(10 Supl 2):S158-65. doi: 10.1097/MLR.0b013e318070c045.
Nonexperimental studies of drug effects in large automated databases can provide timely assessment of real-life drug use, but are prone to confounding by variables that are not contained in these databases and thus cannot be controlled.
To describe how information on additional confounders from validation studies can help address the problem of unmeasured confounding in the main study.
Review types of validation studies that allow adjustment for unmeasured confounding and illustrate these with an example.
Main study: New Jersey residents age 65 years or older hospitalized between 1995 and 1997, who filled prescriptions within Medicaid or a pharmaceutical assistance program. Validation study: representative sample of Medicare beneficiaries.
Association between nonsteroidal antiinflammatory drugs (NSAIDs) and mortality.
Validation studies are categorized as internal (ie, additional information is collected on participants of the main study) or external. Availability of information on disease outcome will affect choice of analytic strategies. Using an external validation study without data on disease outcome to adjust for unmeasured confounding, propensity score calibration (PSC) leads to a plausible estimate of the association between NSAIDs and mortality in the elderly, if the biases caused by measured and unmeasured confounders go in the same direction.
Estimates of drug effects can be adjusted for confounders that are not available in the main, but can be measured in a validation study. PSC uses validation data without information on disease outcome under a strong assumption. The collection and integration of validation data in pharmacoepidemiology should be encouraged.
在大型自动化数据库中进行的药物效应非实验性研究能够及时评估现实生活中的药物使用情况,但容易受到这些数据库中未包含且因此无法控制的变量的混杂影响。
描述来自验证研究的关于其他混杂因素的信息如何有助于解决主要研究中未测量混杂因素的问题。
回顾能够对未测量混杂因素进行调整的验证研究类型,并举例说明。
主要研究:1995年至1997年间住院的65岁及以上新泽西州居民,他们在医疗补助计划或药物援助计划范围内开具处方。验证研究:医疗保险受益人的代表性样本。
非甾体抗炎药(NSAIDs)与死亡率之间的关联。
验证研究分为内部研究(即收集主要研究参与者的额外信息)和外部研究。疾病结局信息的可获得性会影响分析策略的选择。如果测量和未测量混杂因素导致的偏差方向相同,使用没有疾病结局数据的外部验证研究来调整未测量混杂因素,倾向得分校准(PSC)会得出关于老年人中NSAIDs与死亡率之间关联的合理估计。
药物效应估计值可以针对主要研究中不可用但可在验证研究中测量的混杂因素进行调整。PSC在一个强假设下使用没有疾病结局信息的验证数据。应鼓励在药物流行病学中收集和整合验证数据。