Suppr超能文献

利用外部信息对药物流行病学数据库研究中未测量的混杂因素进行调整。

Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information.

作者信息

Stürmer Til, Glynn Robert J, Rothman Kenneth J, Avorn Jerry, Schneeweiss Sebastian

机构信息

Divisions of Pharmacoepidemiology and Pharmacoeconomics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Med Care. 2007 Oct;45(10 Supl 2):S158-65. doi: 10.1097/MLR.0b013e318070c045.

Abstract

BACKGROUND

Nonexperimental studies of drug effects in large automated databases can provide timely assessment of real-life drug use, but are prone to confounding by variables that are not contained in these databases and thus cannot be controlled.

OBJECTIVES

To describe how information on additional confounders from validation studies can help address the problem of unmeasured confounding in the main study.

RESEARCH DESIGN

Review types of validation studies that allow adjustment for unmeasured confounding and illustrate these with an example.

SUBJECTS

Main study: New Jersey residents age 65 years or older hospitalized between 1995 and 1997, who filled prescriptions within Medicaid or a pharmaceutical assistance program. Validation study: representative sample of Medicare beneficiaries.

MEASURES

Association between nonsteroidal antiinflammatory drugs (NSAIDs) and mortality.

RESULTS

Validation studies are categorized as internal (ie, additional information is collected on participants of the main study) or external. Availability of information on disease outcome will affect choice of analytic strategies. Using an external validation study without data on disease outcome to adjust for unmeasured confounding, propensity score calibration (PSC) leads to a plausible estimate of the association between NSAIDs and mortality in the elderly, if the biases caused by measured and unmeasured confounders go in the same direction.

CONCLUSIONS

Estimates of drug effects can be adjusted for confounders that are not available in the main, but can be measured in a validation study. PSC uses validation data without information on disease outcome under a strong assumption. The collection and integration of validation data in pharmacoepidemiology should be encouraged.

摘要

背景

在大型自动化数据库中进行的药物效应非实验性研究能够及时评估现实生活中的药物使用情况,但容易受到这些数据库中未包含且因此无法控制的变量的混杂影响。

目的

描述来自验证研究的关于其他混杂因素的信息如何有助于解决主要研究中未测量混杂因素的问题。

研究设计

回顾能够对未测量混杂因素进行调整的验证研究类型,并举例说明。

研究对象

主要研究:1995年至1997年间住院的65岁及以上新泽西州居民,他们在医疗补助计划或药物援助计划范围内开具处方。验证研究:医疗保险受益人的代表性样本。

测量指标

非甾体抗炎药(NSAIDs)与死亡率之间的关联。

结果

验证研究分为内部研究(即收集主要研究参与者的额外信息)和外部研究。疾病结局信息的可获得性会影响分析策略的选择。如果测量和未测量混杂因素导致的偏差方向相同,使用没有疾病结局数据的外部验证研究来调整未测量混杂因素,倾向得分校准(PSC)会得出关于老年人中NSAIDs与死亡率之间关联的合理估计。

结论

药物效应估计值可以针对主要研究中不可用但可在验证研究中测量的混杂因素进行调整。PSC在一个强假设下使用没有疾病结局信息的验证数据。应鼓励在药物流行病学中收集和整合验证数据。

相似文献

1
Adjustments for unmeasured confounders in pharmacoepidemiologic database studies using external information.
Med Care. 2007 Oct;45(10 Supl 2):S158-65. doi: 10.1097/MLR.0b013e318070c045.
2
Adjusting effect estimates for unmeasured confounding with validation data using propensity score calibration.
Am J Epidemiol. 2005 Aug 1;162(3):279-89. doi: 10.1093/aje/kwi192. Epub 2005 Jun 29.
4
Using nationally representative survey data for external adjustment of unmeasured confounders: An example using the NHANES data.
Pharmacoepidemiol Drug Saf. 2020 Sep;29(9):1151-1158. doi: 10.1002/pds.4946. Epub 2019 Dec 20.
5
Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data.
Stat Methods Med Res. 2019 Feb;28(2):357-371. doi: 10.1177/0962280217726800. Epub 2017 Aug 24.
6
Methods to control for unmeasured confounding in pharmacoepidemiology: an overview.
Int J Clin Pharm. 2016 Jun;38(3):714-23. doi: 10.1007/s11096-016-0299-0. Epub 2016 Apr 18.
10
Analyzing partially missing confounder information in comparative effectiveness and safety research of therapeutics.
Pharmacoepidemiol Drug Saf. 2012 May;21 Suppl 2(0 2):13-20. doi: 10.1002/pds.3248.

引用本文的文献

3
Noninterventional studies in the COVID-19 era: methodological considerations for study design and analysis.
J Clin Epidemiol. 2023 Jan;153:91-101. doi: 10.1016/j.jclinepi.2022.11.011. Epub 2022 Nov 17.
4
Mortality after Transplantation for Hepatocellular Carcinoma: A Study from the European Liver Transplant Registry.
Liver Cancer. 2020 Aug;9(4):455-467. doi: 10.1159/000507397. Epub 2020 May 12.
5
Bias in pharmacoepidemiologic studies using secondary health care databases: a scoping review.
BMC Med Res Methodol. 2019 Mar 11;19(1):53. doi: 10.1186/s12874-019-0695-y.
7
Illustration of the Impact of Unmeasured Confounding Within an Economic Evaluation Based on Nonrandomized Data.
MDM Policy Pract. 2017 Mar 16;2(1):2381468317697711. doi: 10.1177/2381468317697711. eCollection 2017 Jan-Jun.
8
Incretin-Based Therapies and Diabetic Retinopathy: Real-World Evidence in Older U.S. Adults.
Diabetes Care. 2018 Sep;41(9):1998-2009. doi: 10.2337/dc17-2285. Epub 2018 Jul 16.
9
Making fair comparisons in pregnancy medication safety studies: An overview of advanced methods for confounding control.
Pharmacoepidemiol Drug Saf. 2018 Feb;27(2):140-147. doi: 10.1002/pds.4336. Epub 2017 Oct 17.
10
Evaluation of Healthcare Interventions and Big Data: Review of Associated Data Issues.
Pharmacoeconomics. 2017 Aug;35(8):759-765. doi: 10.1007/s40273-017-0513-5.

本文引用的文献

1
Propensity Score Calibration and its Alternatives.
Am J Epidemiol. 2007;165(10):1122-1123. doi: 10.1093/aje/kwm068.
2
Performance of propensity score calibration--a simulation study.
Am J Epidemiol. 2007 May 15;165(10):1110-8. doi: 10.1093/aje/kwm074. Epub 2007 Mar 28.
3
Using the outcome for imputation of missing predictor values was preferred.
J Clin Epidemiol. 2006 Oct;59(10):1092-101. doi: 10.1016/j.jclinepi.2006.01.009. Epub 2006 Jun 19.
4
Selective prescribing led to overestimation of the benefits of lipid-lowering drugs.
J Clin Epidemiol. 2006 Aug;59(8):819-28. doi: 10.1016/j.jclinepi.2005.12.012. Epub 2006 May 26.
5
Smoking imputation and lung cancer in railroad workers exposed to diesel exhaust.
Am J Ind Med. 2006 Sep;49(9):709-18. doi: 10.1002/ajim.20344.
6
Colorectal cancer after start of nonsteroidal anti-inflammatory drug use.
Am J Med. 2006 Jun;119(6):494-502. doi: 10.1016/j.amjmed.2005.11.011.
7
Personality, lifestyle, and risk of cardiovascular disease and cancer: follow-up of population based cohort.
BMJ. 2006 Jun 10;332(7554):1359. doi: 10.1136/bmj.38833.479560.80. Epub 2006 May 10.
8
Variable selection for propensity score models.
Am J Epidemiol. 2006 Jun 15;163(12):1149-56. doi: 10.1093/aje/kwj149. Epub 2006 Apr 19.
9
Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable.
Epidemiology. 2006 May;17(3):268-75. doi: 10.1097/01.ede.0000193606.58671.c5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验