Suppr超能文献

在多蛋白复合物蛋白质组学数据集中发现真实的关联率。

Discover true association rates in multi-protein complex proteomics data sets.

作者信息

Shen Changyu, Li Lang, Chen Jake Yue

机构信息

Department of Medicine, School of Medicine, Indiana University, Indianopolis, IN 46202, USA.

出版信息

Proc IEEE Comput Syst Bioinform Conf. 2005:167-74. doi: 10.1109/csb.2005.29.

Abstract

Experimental processes to collect and process proteomics data are increasingly complex, while the computational methods to assess the quality and significance of these data remain unsophisticated. These challenges have led to many biological oversights and computational misconceptions. We developed a complete empirical Bayes model to analyze multi-protein complex (MPC) proteomics data derived from peptide mass spectrometry detections of purified protein complex pull-down experiments. Our model considers not only bait-prey associations, but also prey-prey associations missed in previous work. Using our model and a yeast MPC proteomics data set, we estimated that there should be an average of 28 true associations per MPC, almost ten times as high as was previously estimated. For data sets generated to mimic a real proteome, our model achieved on average 80% sensitivity in detecting true associations, as compared with the 3% sensitivity in previous work, while maintaining a comparable false discovery rate of 0.3%.

摘要

收集和处理蛋白质组学数据的实验过程日益复杂,而评估这些数据的质量和重要性的计算方法仍不够成熟。这些挑战导致了许多生物学上的疏忽和计算上的误解。我们开发了一个完整的经验贝叶斯模型,用于分析从纯化蛋白质复合物下拉实验的肽质谱检测中获得的多蛋白复合物(MPC)蛋白质组学数据。我们的模型不仅考虑诱饵-猎物关联,还考虑了以往研究中遗漏的猎物-猎物关联。使用我们的模型和一个酵母MPC蛋白质组学数据集,我们估计每个MPC平均应有28个真实关联,几乎是先前估计值的十倍。对于为模拟真实蛋白质组而生成的数据集,我们的模型在检测真实关联时平均实现了80%的灵敏度,而先前研究中的灵敏度为3%,同时保持了相当的0.3%的错误发现率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验