Suppr超能文献

通过具有马尔可夫切换的动态线性模型从时间序列微阵列数据估计时间相关基因网络。

Estimating time-dependent gene networks from time series microarray data by dynamic linear models with Markov switching.

作者信息

Yoshida Ryo, Imoto Seiya, Higuchi Tomoyuki

机构信息

Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku, Tokyo, 103-8569, Japan.

出版信息

Proc IEEE Comput Syst Bioinform Conf. 2005:289-98. doi: 10.1109/csb.2005.32.

Abstract

In gene network estimation from time series microarray data, dynamic models such as differential equations and dynamic Bayesian networks assume that the network structure is stable through all time points, while the real network might changes its structure depending on time, affection of some shocks and so on. If the true network structure underlying the data changes at certain points, the fitting of the usual dynamic linear models fails to estimate the structure of gene network and we cannot obtain efficient information from data. To solve this problem, we propose a dynamic linear model with Markov switching for estimating time-dependent gene network structure from time series gene expression data. Using our proposed method, the network structure between genes and its change points are automatically estimated. We demonstrate the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae cell cycle time series data.

摘要

在从时间序列微阵列数据估计基因网络时,诸如微分方程和动态贝叶斯网络等动态模型假定网络结构在所有时间点都是稳定的,而实际网络可能会根据时间、某些冲击的影响等改变其结构。如果数据背后的真实网络结构在某些点发生变化,那么通常的动态线性模型的拟合将无法估计基因网络的结构,并且我们无法从数据中获得有效的信息。为了解决这个问题,我们提出了一种具有马尔可夫切换的动态线性模型,用于从时间序列基因表达数据估计随时间变化的基因网络结构。使用我们提出的方法,可以自动估计基因之间的网络结构及其变化点。我们通过对酿酒酵母细胞周期时间序列数据的分析证明了所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验