Harper James K, Grant David M, Zhang Yuegang, Lee Peter L, Von Dreele Robert
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
J Am Chem Soc. 2006 Feb 8;128(5):1547-52. doi: 10.1021/ja055570j.
Synchrotron X-ray powder diffraction and solid-state (13)C NMR shift tensor data are combined to provide a unique path to structure in microcrystalline organic solids. Analysis is demonstrated on ambuic acid powder, a widely occurring natural product, to provide the complete crystal structure. The NMR data verify phase purity, specify one molecule per asymmetric unit, and provide an initial structural model including relative stereochemistry and molecular conformation. A refinement of X-ray data from the initial model establishes that ambuic acid crystallizes in the P2(1) space group with unit cell parameters a = 15.5047(7), b = 4.3904(2), and c = 14.1933(4) A and beta = 110.3134(3) degrees . This combined analysis yields structural improvements at two dihedral angles over prior NMR predictions with differences of 103 degrees and 37 degrees found. Only minor differences of +/-5.5 degrees , on average, are observed at all remaining dihedral angles. Predicted hydroxyl hydrogen-bonding orientations also fit NMR predictions within +/-6.9 degrees . This refinement corrects chemical shift assignments at two carbons and reduces the NMR error by approximately 16%. This work demonstrates that the combination of long-range order information from synchrotron powder diffraction data together with the accurate shorter range structure given by solid-state NMR measurements is a powerful tool for studying challenging organic solids.
同步辐射X射线粉末衍射和固态(13)C NMR位移张量数据相结合,为微晶有机固体的结构研究提供了一条独特的途径。以广泛存在的天然产物ambuic酸粉末为例进行分析,以确定其完整的晶体结构。NMR数据验证了相纯度,确定每个不对称单元中有一个分子,并提供了一个包括相对立体化学和分子构象的初始结构模型。对初始模型的X射线数据进行精修后确定,ambuic酸以P2(1)空间群结晶,晶胞参数为a = 15.5047(7)、b = 4.3904(2)、c = 14.1933(4) Å以及β = 110.3134(3)°。与之前的NMR预测相比,这种综合分析在两个二面角上改进了结构,发现差异为103°和37°。在所有其余二面角上,平均仅观察到±5.5°的微小差异。预测的羟基氢键取向也与NMR预测值在±6.9°范围内相符。这种精修校正了两个碳原子的化学位移归属,并将NMR误差降低了约16%。这项工作表明,将同步辐射粉末衍射数据中的长程有序信息与固态NMR测量给出的精确短程结构相结合,是研究具有挑战性的有机固体的有力工具。