Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
J Am Chem Soc. 2010 Mar 10;132(9):2928-37. doi: 10.1021/ja907671p.
Analyses combining X-ray powder diffraction (XRD) and solid-state NMR (SSNMR) data can now provide crystal structures in challenging powders that are inaccessible by traditional methods. The flavonoid catechin is an ideal candidate for these methods, as it has eluded crystallographic characterization despite extensive study. Catechin was first described nearly two centuries ago, and its powders exhibit numerous levels of hydration. Here, synchrotron XRD data provide all heavy-atom positions in (+)-catechin 4.5-hydrate and establish the space group as C2. SSNMR data ((13)C tensor and (1)H/(13)C correlation) complete the conformation by providing catechin's five OH hydrogen orientations. Since 1903, this phase has been erroneously identified as a 4.0 hydrate, but XRD and density data establish that this discrepancy is due to the facile loss of the water molecule located at a Wyckoff special position in the unit cell. A final improvement to heavy-atom positions is provided by a geometry optimization of bond lengths and valence angles with XRD torsion angles held constant. The structural enhancement in this final structure is confirmed by the significantly improved fit of computed (13)C tensors to experimental data.
现在,结合 X 射线粉末衍射 (XRD) 和固态 NMR (SSNMR) 数据的分析方法可以为传统方法无法获得的复杂粉末晶体结构提供信息。类黄酮儿茶素是这些方法的理想候选物,因为尽管经过了广泛的研究,它仍然无法进行晶体学表征。儿茶素在近两个世纪前首次被描述,其粉末表现出多种程度的水合作用。在这里,同步加速器 XRD 数据提供了 (+)-儿茶素 4.5 水合物中所有重原子的位置,并确定了空间群为 C2。SSNMR 数据((13)C 张量和 (1)H/(13)C 相关)通过提供儿茶素五个 OH 氢原子的取向来完成构象。自 1903 年以来,这种相一直被错误地识别为 4.0 水合物,但 XRD 和密度数据表明,这种差异是由于位于单位晶胞中 Wyckoff 特殊位置的水分子易于丢失所致。通过将 XRD 扭转角保持不变来优化键长和价角,可以对重原子位置进行最终改进。通过将计算出的 (13)C 张量与实验数据的拟合显著改善,来确认最终结构中的结构增强。