Davy Brenda M, Davy Kevin P
Dept of Human Nutrition, Foods and Exercise (0430), Virginia Tech, Blacksburg, VA 24061, USA.
Lipids Health Dis. 2006 Jan 31;5:3. doi: 10.1186/1476-511X-5-3.
The purpose of this investigation was to determine the influence of analytical method on reported concentrations of plasma lipids and lipoproteins, and to determine if there are clinical implications of any potential differences on identification of the metabolic syndrome dyslipidemia, CVD risk stratification and classification of LDL subclass phenotype.
Plasma triglyceride (TG) concentrations were 1.09 +/- 0.06 and 1.17 +/- 0.06 mmol/L and plasma high density lipoprotein cholesterol (HDL-C) concentrations were 1.09 +/- 0.03 vs 1.19 +/- 0.03 mmol/L (both p < 0.05) from 113 duplicate samples sent to two laboratories utilizing different lipid and lipoprotein analytical methods (LABS 1 and 2, respectively). Plasma total cholesterol and low-density lipoprotein cholesterol (LDL-C) concentrations were also significantly different between laboratories. Spearman rho correlations indicate excellent agreement of TG and HDL-C determined by the two laboratories (r = 0.96, TG; r = 0.91, HDL-C, both p < 0.001). Eleven vs. 14 individuals met the TG criteria and 70 vs. 48 met HDL-C metabolic syndrome criteria with LAB 1 and 2, respectively. Apoprotein B concentration (LAB 1) and LDL particle number (LAB 2) were highly correlated. (r = 0.92, P < 0.01). LAB 2 characterized more individuals as LDL pattern B phenotype, as compared to LAB 1 (30 vs. 14%, P < 0.05).
Different plasma lipid and lipoprotein analytical techniques yield results which are highly correlated, yet significantly different, which suggests a consistent measurement difference. This difference has clinical implications, in that the proportion of individuals identified as meeting the metabolic syndrome dyslipidemia criteria, "at risk" based upon apo B or LDL particle number, and the LDL pattern B phenotype will differ based upon choice of analytical method.
本研究的目的是确定分析方法对所报告的血浆脂质和脂蛋白浓度的影响,并确定在代谢综合征血脂异常的识别、心血管疾病风险分层以及低密度脂蛋白亚类表型分类方面,任何潜在差异是否具有临床意义。
将113份重复样本分别送至采用不同脂质和脂蛋白分析方法的两个实验室(分别为实验室1和实验室2),血浆甘油三酯(TG)浓度分别为1.09±0.06和1.17±0.06 mmol/L,血浆高密度脂蛋白胆固醇(HDL-C)浓度分别为1.09±0.03和1.19±0.03 mmol/L(两者p<0.05)。两个实验室之间血浆总胆固醇和低密度脂蛋白胆固醇(LDL-C)浓度也存在显著差异。Spearman等级相关性表明,两个实验室测定的TG和HDL-C具有极好的一致性(r = 0.96,TG;r = 0.91,HDL-C,两者p<0.001)。实验室1和实验室2分别有11名和14名个体符合TG标准,70名和48名个体符合HDL-C代谢综合征标准。载脂蛋白B浓度(实验室1)与低密度脂蛋白颗粒数(实验室2)高度相关(r = 0.92,P<0.01)。与实验室1相比,实验室2将更多个体归类为低密度脂蛋白B型表型(30%对14%,P<0.05)。
不同的血浆脂质和脂蛋白分析技术产生的结果高度相关,但存在显著差异,这表明存在一致的测量差异。这种差异具有临床意义,因为根据分析方法的选择,被确定为符合代谢综合征血脂异常标准、基于载脂蛋白B或低密度脂蛋白颗粒数处于“风险”状态以及低密度脂蛋白B型表型的个体比例会有所不同。