Suppr超能文献

肌萎缩侧索硬化转基因小鼠模型中的早期异常。

Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis.

作者信息

Durand Jacques, Amendola Julien, Bories Cyril, Lamotte d'Incamps Boris

机构信息

CNRS UMR 6196, Plasticité et Physiopathologie de la Motricité, Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.

出版信息

J Physiol Paris. 2006 Mar-May;99(2-3):211-20. doi: 10.1016/j.jphysparis.2005.12.014. Epub 2006 Jan 30.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice. Several hypotheses have been advanced to explain the selective loss of motor neurons such as apoptosis, neurofilament disorganisation, oxidative stress, mitochondrial dysfunction, astrogliosis and excitotoxicity. Although disease onset appears at adulthood, recent studies have detected abnormalities during embryonic and postnatal maturation in animal models of ALS. We reported that SOD1(G85R) mutant mice exhibit specific delays in acquiring sensory-motor skills during the first week after birth. In addition, physiological measurements on in vitro spinal cord preparations reveal defects in evoking rhythmic activity with N-methyl-DL-aspartate and serotonin at lumbar, but not sacral roots. This is potentially significant, as functions involving sacral roots are spared at late stages of the disease. Moreover, electrical properties of SOD1 lumbar motoneurons are altered as early as the second postnatal week when mice begin to walk. Alterations concern the input resistance and the gain of SOD1 motoneurons which are lower than in control motoneurons. Whether or not the early changes in discharge firing are responsible for the uncoupling between motor axon terminals and muscles is still an open question. A link between these early electrical abnormalities and the late degeneration of motoneurons is proposed in this short review. Our data suggest that ALS, as other neurodegenerative diseases, could be a consequence of an abnormal development of neurons and network properties. We hypothesize that the SOD1 mutation could induce early changes during the period of maturation of motor systems and that compensatory mechanisms-linked to developmental spinal plasticity-might explain the late onset of the disease.

摘要

肌萎缩侧索硬化症(ALS)是一种神经退行性致命性人类疾病,其特征为运动神经元进行性丧失。ALS转基因小鼠模型对于研究这种神经退行性疾病的初始机制非常有用。我们在此将重点关注在超氧化物歧化酶1(SOD1)突变小鼠中观察到的早期异常情况。已经提出了几种假说来解释运动神经元的选择性丧失,如细胞凋亡、神经丝紊乱、氧化应激、线粒体功能障碍、星形胶质细胞增生和兴奋性毒性。尽管疾病在成年期发病,但最近的研究在ALS动物模型的胚胎期和出生后成熟过程中检测到了异常情况。我们报道SOD1(G85R)突变小鼠在出生后的第一周内获得感觉运动技能时表现出特定延迟。此外,对体外脊髓制剂的生理测量显示,在腰段而非骶段神经根处,用N-甲基-DL-天冬氨酸和5-羟色胺诱发节律性活动存在缺陷。这可能具有重要意义,因为涉及骶段神经根的功能在疾病后期得以保留。此外,早在出生后第二周小鼠开始行走时,SOD1腰段运动神经元的电特性就发生了改变。这些改变涉及SOD1运动神经元的输入电阻和增益,均低于对照运动神经元。放电发放的早期变化是否导致运动轴突终末与肌肉之间的解偶联仍是一个悬而未决的问题。这篇简短综述提出了这些早期电异常与运动神经元后期退化之间的联系。我们的数据表明,ALS与其他神经退行性疾病一样,可能是神经元和网络特性异常发育的结果。我们推测SOD1突变可能在运动系统成熟期间诱导早期变化,而与发育性脊髓可塑性相关的补偿机制可能解释疾病的晚期发病。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验