Institute of Neurophysiology, Goethe-University, Frankfurt, Germany.
J Neuropathol Exp Neurol. 2010 Oct;69(10):1057-70. doi: 10.1097/NEN.0b013e3181f4dcef.
The balance between excitatory and inhibitory synaptic inputs is critical for the physiological control of motoneurons. The maintenance of a low-intracellular chloride concentration by the potassium chloride cotransporter 2 (KCC2) is essential for the efficacy of fast synaptic inhibition of mature motoneurons in response to the activation of ionotropic γ-aminobutyric acid A and glycine receptors. Altered synaptic balance and excitotoxicity have been proposed as candidate pathophysiological processes in amyotrophic lateral sclerosis (ALS). Therefore, we investigated the expression patterns of KCC2 and its functional opponent, the chloride influx-mediating sodium-potassium chloride cotransporter 1 (NKCC1), in the superoxide dismutase 1 (SOD1-G93A) mouse model of ALS. We detected reduced KCC2 messenger RNA levels and less membrane-bound KCC2 immunoreactivity in ALS-vulnerable motoneurons in lumbar spinal cord and hypoglossal nuclei of SOD1-G93A mice but not in degeneration-resistant oculomotor nuclei. Downregulation of KCC2 started during late presymptomatic stages and accelerated in parallel to hind limb and tongue motor function deficits. In contrast, NKCC1 messenger RNA levels were unaltered in postnatal lumbar spinal cord motoneurons. Our data indicate that reductions in KCC2 gene expression may contribute to selective motor deficits and disease progression in vulnerable motoneurons in a mouse model of ALS.
兴奋性和抑制性突触输入之间的平衡对于运动神经元的生理控制至关重要。钾氯离子共转运蛋白 2 (KCC2) 将细胞内氯离子浓度维持在低水平,对于成熟运动神经元对离子型 γ-氨基丁酸 A 和甘氨酸受体激活的快速突触抑制的功效至关重要。突触平衡的改变和兴奋性毒性已被提出作为肌萎缩侧索硬化症 (ALS) 的候选病理生理过程。因此,我们研究了超氧化物歧化酶 1 (SOD1-G93A) ALS 小鼠模型中 KCC2 及其功能对手氯离子内流介导的钠-钾-氯共转运蛋白 1 (NKCC1) 的表达模式。我们在 SOD1-G93A 小鼠的腰椎脊髓和舌下神经核中检测到易患 ALS 的运动神经元中 KCC2 信使 RNA 水平降低和膜结合 KCC2 免疫反应性降低,但在不易退变的动眼神经核中则没有。KCC2 的下调始于晚期前症状阶段,并与后肢和舌运动功能缺陷平行加速。相比之下,NKCC1 信使 RNA 水平在出生后腰椎脊髓运动神经元中没有改变。我们的数据表明,KCC2 基因表达的减少可能导致 ALS 小鼠模型中易患运动神经元的选择性运动缺陷和疾病进展。