Oak Shilpa A, Tran Cang, Pan Gerald, Thamotharan Mannikkavasagar, Devaskar Sherin U
Division of Neonatology and Developmental Biology, David Geffen School at Medicine at University of California at Los Angeles, CA 90095-1752, USA.
Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1321-30. doi: 10.1152/ajpendo.00437.2005. Epub 2006 Jan 31.
To determine the molecular mechanism(s) linking fetal adaptations in intrauterine growth restriction (IUGR) to adult maladaptations of type 2 diabetes mellitus, we investigated the effect of prenatal seminutrient restriction, modified by early postnatal ad libitum access to nutrients (CM/SP) or seminutrient restriction (SM/SP), vs. early postnatal seminutrient restriction alone (SM/CP) or control nutrition (CM/CP) on the skeletal muscle postreceptor insulin-signaling pathway in the adult offspring. The altered in utero hormonal/metabolic milieu was associated with no change in basal total IRS-1, p85, and p110beta subunits of PI 3-kinase, PKCtheta, and PKCzeta concentrations but an increase in basal IRS-2 (P < 0.05) only in the CM/SP group and an increase in basal phospho (p)-PDK-1 (P < 0.05), p-Akt (P < 0.05), and p-PKCzeta (P < 0.05) concentrations in the CM/SP and SM/SP groups. Insulin-stimulated increases in p-PDK-1 (P < 0.05) and p-Akt (P < 0.0007), with no increase in p-PKCzeta, were seen in both CM/SP and SM/SP groups. SHP2 (P < 0.03) and PTP1B (P < 0.03) increased only in SM/SP with no change in PTEN in CM/SP and SM/SP groups. Aberrations in kinase and phosphatase moieties in the adult IUGR offspring were initiated in utero but further sculpted by the early postnatal nutritional state. Although the CM/SP group demonstrated enhanced kinase activation, the SM/SP group revealed an added increase in phosphatase concentrations with the net result of heightened basal insulin sensitivity in both groups. The inability to further respond to exogenous insulin was due to the key molecular distal roadblock consisting of resistance to phosphorylate and activate PKCzeta necessary for GLUT4 translocation. This protective adaptation may become maladaptive and serve as a forerunner for gestational and type 2 diabetes mellitus.
为了确定将宫内生长受限(IUGR)中的胎儿适应性与2型糖尿病的成人适应不良联系起来的分子机制,我们研究了产前半营养限制的影响,通过产后早期随意获取营养(CM/SP)或半营养限制(SM/SP)进行改良,与单独的产后早期半营养限制(SM/CP)或对照营养(CM/CP)相比,对成年后代骨骼肌受体后胰岛素信号通路的影响。子宫内激素/代谢环境的改变与PI 3激酶、PKCθ和PKCζ浓度的基础总IRS-1、p85和p110β亚基无变化相关,但仅在CM/SP组中基础IRS-2增加(P < 0.05),在CM/SP和SM/SP组中基础磷酸化(p)-PDK-1(P < 0.05)、p-Akt(P < 0.05)和p-PKCζ(P < 0.05)浓度增加。在CM/SP和SM/SP组中均观察到胰岛素刺激的p-PDK-1(P < 0.05)和p-Akt(P < 0.0007)增加,而p-PKCζ无增加。仅在SM/SP中SHP2(P < 0.03)和PTP1B(P < 0.03)增加,在CM/SP和SM/SP组中PTEN无变化。成年IUGR后代中激酶和磷酸酶部分的异常在子宫内就已开始,但在产后早期营养状态的进一步塑造下。尽管CM/SP组表现出增强的激酶激活,但SM/SP组显示磷酸酶浓度进一步增加,两组基础胰岛素敏感性均升高的净结果。无法对外源性胰岛素进一步反应是由于关键的分子远端障碍,即对磷酸化和激活GLUT4易位所需的PKCζ具有抗性。这种保护性适应可能会变得适应不良,并成为妊娠期和2型糖尿病的先兆。