Frøsig Christian, Rose Adam J, Treebak Jonas T, Kiens Bente, Richter Erik A, Wojtaszewski Jørgen F P
Copenhagen Muscle Research Centre, Section of Human Physiology, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
Diabetes. 2007 Aug;56(8):2093-102. doi: 10.2337/db06-1698. Epub 2007 May 18.
The purpose of this study was to investigate the mechanisms explaining improved insulin-stimulated glucose uptake after exercise training in human skeletal muscle. Eight healthy men performed 3 weeks of one-legged knee extensor endurance exercise training. Fifteen hours after the last exercise bout, insulin-stimulated glucose uptake was approximately 60% higher (P < 0.01) in the trained compared with the untrained leg during a hyperinsulinemic-euglycemic clamp. Muscle biopsies were obtained before and after training as well as after 10 and 120 min of insulin stimulation in both legs. Protein content of Akt1/2 (55 +/- 17%, P < 0.05), AS160 (25 +/- 8%, P = 0.08), GLUT4 (52 +/- 19%, P < 0.001), hexokinase 2 (HK2) (197 +/- 40%, P < 0.001), and insulin-responsive aminopeptidase (65 +/- 15%, P < 0.001) increased in muscle in response to training. During hyperinsulinemia, activities of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-K) (P < 0.005), Akt1 (P < 0.05), Akt2 (P < 0.005), and glycogen synthase (GS) (percent I-form, P < 0.05) increased similarly in both trained and untrained muscle, consistent with increased phosphorylation of Akt Thr(308), Akt Ser(473), AS160, glycogen synthase kinase (GSK)-3alpha Ser(21), and GSK-3beta Ser(9) and decreased phosphorylation of GS site 3a+b (all P < 0.005). Interestingly, training improved insulin action on thigh blood flow, and, furthermore, in both basal and insulin-stimulated muscle tissue, activities of Akt1 and GS and phosphorylation of AS160 increased with training (all P < 0.05). In contrast, training reduced IRS-1-associated PI3-K activity (P < 0.05) in both basal and insulin-stimulated muscle tissue. Our findings do not support generally improved insulin signaling after endurance training; rather it seems that improved insulin-stimulated glucose uptake may result from hemodynamic adaptations as well as increased cellular protein content of individual insulin signaling components and molecules involved in glucose transport and metabolism.
本研究的目的是探究运动训练后人体骨骼肌胰岛素刺激的葡萄糖摄取改善的机制。八名健康男性进行了为期3周的单腿膝关节伸肌耐力运动训练。在最后一次运动后15小时,在高胰岛素-正常血糖钳夹期间,训练腿的胰岛素刺激的葡萄糖摄取比未训练腿高约60%(P<0.01)。在训练前后以及双腿胰岛素刺激10分钟和120分钟后获取肌肉活检样本。Akt1/2的蛋白质含量(55±17%,P<0.05)、AS160(25±8%,P = 0.08)、GLUT4(52±19%,P<0.001)、己糖激酶2(HK2)(197±40%,P<0.001)和胰岛素反应性氨肽酶(65±15%,P<0.001)因训练而在肌肉中增加。在高胰岛素血症期间,胰岛素受体底物-1(IRS-1)相关的磷脂酰肌醇3激酶(PI3-K)(P<0.005)、Akt1(P<0.05)、Akt2(P<0.005)和糖原合酶(GS)(I型百分比,P<0.05)在训练和未训练的肌肉中均有类似增加,这与Akt Thr(308)、Akt Ser(473)、AS160、糖原合酶激酶(GSK)-3α Ser(21)和GSK-3β Ser(9)的磷酸化增加以及GS位点3a + b的磷酸化减少一致(均P<0.005)。有趣的是,训练改善了胰岛素对大腿血流的作用,此外,在基础和胰岛素刺激的肌肉组织中,Akt1和GS的活性以及AS160的磷酸化随训练而增加(均P<0.05)。相反,训练降低了基础和胰岛素刺激的肌肉组织中IRS-1相关的PI3-K活性(P<0.05)。我们的研究结果不支持耐力训练后胰岛素信号普遍改善的观点;相反,胰岛素刺激的葡萄糖摄取改善似乎可能是由于血流动力学适应以及参与葡萄糖转运和代谢的各个胰岛素信号成分和分子的细胞蛋白质含量增加所致。