Motegi Akira, Kuntz Karen, Majeed Anju, Smith Stephanie, Myung Kyungjae
Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Building 49, Room 4A22, Bethesda, MD 20892, USA.
Mol Cell Biol. 2006 Feb;26(4):1424-33. doi: 10.1128/MCB.26.4.1424-1433.2006.
Gross chromosomal rearrangements (GCRs) are frequently observed in many cancers. Previously, we showed that inactivation of Rad5 or Rad18, ubiquitin ligases (E3) targeting for proliferating cell nuclear antigen (PCNA), increases the de novo telomere addition type of GCR (S. Smith, J. Y. Hwang, S. Banerjee, A. Majeed, A. Gupta, and K. Myung, Proc. Natl. Acad. Sci. USA 101:9039-9044, 2004). GCR suppression by Rad5 and Rad18 appears to be exerted by the RAD5-dependent error-free mode of bypass DNA repair. In contrast, Siz1 SUMO ligase and another ubiquitin ligase, Bre1, which target for PCNA and histone H2B, respectively, have GCR-supporting activities. Inactivation of homologous recombination (HR) proteins or the helicase Srs2 reduces GCR rates elevated by the rad5 or rad18 mutation. GCRs are therefore likely to be produced through the restrained recruitment of an HR pathway to stalled DNA replication forks. Since this HR pathway is compatible with Srs2, it is not a conventional form of recombinational pathway. Lastly, we demonstrate that selection of proper DNA repair pathways to stalled DNA replication forks is controlled by the Mec1-dependent checkpoint and is executed by cooperative functions of Siz1 and Srs2. We propose a mechanism for how defects in these proteins could lead to diverse outcomes (proper repair or GCR formation) through different regulation of DNA repair machinery.
在许多癌症中经常观察到染色体大片段重排(GCRs)。此前,我们发现,靶向增殖细胞核抗原(PCNA)的泛素连接酶(E3)Rad5或Rad18失活,会增加GCR的从头端粒添加类型(S. Smith、J.Y. Hwang、S. Banerjee、A. Majeed、A. Gupta和K. Myung,《美国国家科学院院刊》101:9039 - 9044,2004年)。Rad5和Rad18对GCR的抑制作用似乎是通过RAD5依赖的无差错旁路DNA修复模式来实现的。相比之下,分别靶向PCNA和组蛋白H2B的Siz1 SUMO连接酶和另一种泛素连接酶Bre1具有支持GCR的活性。同源重组(HR)蛋白或解旋酶Srs2失活可降低由rad5或rad18突变导致的GCR发生率。因此,GCRs可能是通过HR途径向停滞的DNA复制叉的受限募集而产生的。由于这种HR途径与Srs2兼容,所以它不是传统形式的重组途径。最后,我们证明,对停滞的DNA复制叉选择合适的DNA修复途径是由Mec1依赖的检查点控制的,并由Siz1和Srs2的协同功能执行。我们提出了一种机制,说明这些蛋白质中的缺陷如何通过对DNA修复机制的不同调节导致不同的结果(正确修复或GCR形成)。