Suppr超能文献

利用微卫星和单核苷酸多态性进行复杂疾病的连锁分析:在酒精中毒中的应用。

Linkage analysis of complex diseases using microsatellites and single-nucleotide polymorphisms: application to alcoholism.

机构信息

Genetic Epidemiology Group, International Agency for Research on Cancer, World Health Organization, 150 Cours Albert Thomas, 69008 Lyon, France.

出版信息

BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S10. doi: 10.1186/1471-2156-6-S1-S10.

Abstract

The efficacy of linkage studies using microsatellites and single-nucleotide polymorphisms (SNPs) was evaluated. Analyzed data were supplied by the Collaborative Study on the Genetics of Alcoholism (COGA). Alcoholism was analyzed together with a simulated trait caused by a gene of known position, through a nonparametric linkage test (NPL). For the alcoholism trait, four densities of SNPs (1 SNP per 0.2 cM, 0.5 cM, 1 cM and 2 cM) showed higher peaks of NPL z scores and smaller significant p-values than the usual 10-cM density of microsatellites. However, the two highest densities of SNPs had unstable z score signals, and therefore were difficult to interpret. Analyzing a simulated trait with the same markers in the same pedigrees, we confirmed the higher power of all four densities of SNPs compared to the 10-cM microsatellites panel, although the existence of other confounding peaks was confirmed for maps that are denser than 1 SNP/cM. We further showed that estimating the gene position using SNPs is far less biased than using the usual panel of microsatellites (biases of 0-2 cM for SNPs vs. 8.9 cM for microsatellites). We conclude that using dense maps of SNPs in linkage analysis is more powerful and less biased than using the 10-cM maps of microsatellites. However, linkage signals can be unstable and difficult to interpret when several SNPs are genotyped per centimorgan. The power and accuracy of 1 SNP/cM or 1 SNP/2 cM may be sufficient in a genome-wide linkage scan while denser maps may be most useful in fine-gene mapping studies exploiting linkage disequilibrium.

摘要

我们评估了使用微卫星和单核苷酸多态性 (SNP) 进行连锁研究的功效。分析数据由酒精中毒遗传学合作研究 (COGA) 提供。通过非参数连锁检验 (NPL),将酒精中毒与已知位置基因引起的模拟特征一起进行分析。对于酒精中毒特征,与通常的 10-cM 微卫星密度相比,四种 SNP 密度(每 0.2 cM、0.5 cM、1 cM 和 2 cM 一个 SNP)显示出更高的 NPL z 分数峰值和更小的显著 p 值。然而,两种最高密度的 SNP 具有不稳定的 z 分数信号,因此难以解释。在相同家系中用相同标记物分析模拟特征,我们确认了所有四种 SNP 密度都比 10-cM 微卫星面板具有更高的功效,尽管对于密度大于 1 SNP/cM 的图谱,证实了存在其他混杂峰。我们进一步表明,使用 SNP 估计基因位置的偏差远小于使用通常的微卫星面板(SNP 的偏差为 0-2 cM,微卫星的偏差为 8.9 cM)。我们得出结论,在连锁分析中使用 SNP 的密集图谱比使用 10-cM 的微卫星图谱更有效且偏差更小。然而,当每 centimorgan 对多个 SNP 进行基因分型时,连锁信号可能不稳定且难以解释。在全基因组连锁扫描中,1 SNP/cM 或 1 SNP/2 cM 的功效和准确性可能足够,而在利用连锁不平衡进行精细基因图谱研究时,更密集的图谱可能最有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/1866840/1adcb954cff9/1471-2156-6-S1-S10-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验