Inherited Disease Research Branch, NHGRI/NIH, Baltimore, MD, USA.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S20. doi: 10.1186/1471-2156-6-S1-S20.
Genome-wide linkage analysis using microsatellite markers has been successful in the identification of numerous Mendelian and complex disease loci. The recent availability of high-density single-nucleotide polymorphism (SNP) maps provides a potentially more powerful option. Using the simulated and Collaborative Study on the Genetics of Alcoholism (COGA) datasets from the Genetics Analysis Workshop 14 (GAW14), we examined how altering the density of SNP marker sets impacted the overall information content, the power to detect trait loci, and the number of false positive results. For the simulated data we used SNP maps with density of 0.3 cM, 1 cM, 2 cM, and 3 cM. For the COGA data we combined the marker sets from Illumina and Affymetrix to create a map with average density of 0.25 cM and then, using a sub-sample of these markers, created maps with density of 0.3 cM, 0.6 cM, 1 cM, 2 cM, and 3 cM. For each marker set, multipoint linkage analysis using MERLIN was performed for both dominant and recessive traits derived from marker loci. Our results showed that information content increased with increased map density. For the homogeneous, completely penetrant traits we created, there was only a modest difference in ability to detect trait loci. Additionally, as map density increased there was only a slight increase in the number of false positive results when there was linkage disequilibrium (LD) between markers. The presence of LD between markers may have led to an increased number of false positive regions but no clear relationship between regions of high LD and locations of false positive linkage signals was observed.
全基因组连锁分析使用微卫星标记已成功鉴定了许多孟德尔和复杂疾病基因座。最近高密度单核苷酸多态性(SNP)图谱的可用性提供了一种潜在更强大的选择。使用来自遗传学分析研讨会 14(GAW14)的模拟和协作性酒精中毒遗传学研究(COGA)数据集,我们研究了改变 SNP 标记集密度如何影响总体信息量、检测性状基因座的能力和假阳性结果的数量。对于模拟数据,我们使用 SNP 图谱的密度为 0.3 cM、1 cM、2 cM 和 3 cM。对于 COGA 数据,我们将 Illumina 和 Affymetrix 的标记集组合起来,创建了一个平均密度为 0.25 cM 的图谱,然后使用这些标记的一个子样本,创建了密度为 0.3 cM、0.6 cM、1 cM、2 cM 和 3 cM 的图谱。对于每个标记集,使用 MERLIN 进行了多点点状连锁分析,用于从标记基因座衍生的显性和隐性性状。我们的结果表明,信息量随图谱密度的增加而增加。对于我们创建的同质、完全外显的性状,检测性状基因座的能力只有适度的差异。此外,随着图谱密度的增加,当标记之间存在连锁不平衡(LD)时,假阳性结果的数量仅略有增加。标记之间的 LD 可能导致假阳性区域的数量增加,但没有观察到高 LD 区域与假阳性连锁信号位置之间的明确关系。