Suppr超能文献

采用受影响和不一致的同胞对进行酒精依赖的连锁分析。

Linkage analysis of alcohol dependence using both affected and discordant sib pairs.

机构信息

Department of Epidemiology & Biostatistics, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building, Cleveland, OH 44106, USA.

出版信息

BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S36. doi: 10.1186/1471-2156-6-S1-S36.

Abstract

The basic idea of affected-sib-pair (ASP) linkage analysis is to test whether the inheritance pattern of a marker deviates from Mendelian expectation in a sample of ASPs. The test depends on an assumed Mendelian control distribution of the number of marker alleles shared identical by descent (IBD), i.e., 1/4, 1/2, and 1/4 for 2, 1, and 0 allele(s) IBD, respectively. However, Mendelian transmission may not always hold, for example because of inbreeding or meiotic drive at the marker or a nearby locus. A more robust and valid approach is to incorporate discordant-sib-pairs (DSPs) as controls to avoid possible false-positive results. To be robust to deviation from Mendelian transmission, here we analyzed Collaborative Study on the Genetics of Alcoholism data by modifying the ASP LOD score method to contrast the estimated distribution of the number of allele(s) shared IBD by ASPs with that by DSPs, instead of with the expected distribution under the Mendelian assumption. This strategy assesses the difference in IBD sharing between ASPs and the IBD sharing between DSPs. Further, it works better than the conventional LOD score ASP linkage method in these data in the sense of avoiding false-positive linkage evidence.

摘要

受影响同胞对(ASP)连锁分析的基本思想是检验在 ASP 样本中,标记的遗传模式是否偏离孟德尔预期。该检验依赖于假定的标记等位基因共享一致的遗传(IBD)数量的孟德尔控制分布,即 2、1 和 0 个等位基因 IBD 的分别为 1/4、1/2 和 1/4。然而,孟德尔传递并不总是成立的,例如,由于标记或附近基因座的近交或减数分裂驱动。更稳健和有效的方法是纳入不合规同胞对(DSP)作为对照,以避免可能的假阳性结果。为了稳健地应对孟德尔传递的偏差,我们通过修改 ASP LOD 评分方法来分析酒精中毒遗传学合作研究的数据,以对比 ASP 共享 IBD 的等位基因数量的估计分布与 DSP 共享 IBD 的等位基因数量的分布,而不是与孟德尔假设下的预期分布进行对比。该策略评估了 ASP 之间的 IBD 共享与 DSP 之间的 IBD 共享之间的差异。此外,与传统的 LOD 评分 ASP 连锁方法相比,在这些数据中,它在避免假阳性连锁证据方面效果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/684f/1866749/201dc89f94da/1471-2156-6-S1-S36-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验