Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S62. doi: 10.1186/1471-2156-6-S1-S62.
We use the Genetic Analysis Workshop 14 simulated data to explore the effectiveness of a two-stage strategy for mapping complex disease loci consisting of an initial genome scan with confidence interval construction for gene location, followed by fine mapping with family-based tests of association on a dense set of single-nucleotide polymorphisms. We considered four types of intervals: the 1-LOD interval, a basic percentile bootstrap confidence interval based on the position of the maximum Zlr score, and asymptotic and bootstrap confidence intervals based on a generalized estimating equations method. For fine mapping we considered two family-based tests of association: a test based on a likelihood ratio statistic and a transmission-disequilibrium-type test implemented in the software FBAT. In two of the simulation replicates, we found that the bootstrap confidence intervals based on the peak Zlr and the 1-LOD support interval always contained the true disease loci and that the likelihood ratio test provided further strong confirmatory evidence of the presence of disease loci in these regions.
我们使用 Genetic Analysis Workshop 14 模拟数据来探索一种两阶段策略在定位复杂疾病基因座中的有效性,该策略包括使用置信区间构建进行基因定位的初始全基因组扫描,然后使用基于家系的关联测试对密集单核苷酸多态性进行精细定位。我们考虑了四种类型的区间:1-LOD 区间、基于最大 Zlr 得分位置的基本百分位 bootstrap 置信区间,以及基于广义估计方程方法的渐近和 bootstrap 置信区间。对于精细定位,我们考虑了两种基于家系的关联测试:一种基于似然比统计量的测试和一种在软件 FBAT 中实现的传递不平衡型测试。在两个模拟重复中,我们发现基于峰值 Zlr 和 1-LOD 支持区间的 bootstrap 置信区间始终包含真实的疾病基因座,并且似然比检验提供了这些区域存在疾病基因座的进一步强确认证据。