Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S78. doi: 10.1186/1471-2156-6-S1-S78.
Although permutation testing has been the gold standard for assessing significance levels in studies using multiple markers, it is time-consuming. A Bonferroni correction to the nominal p-value that uses the underlying pair-wise linkage disequilibrium (LD) structure among the markers to determine the number of effectively independent tests has recently been proposed. We propose using the number of independent LD blocks plus the number of independent single-nucleotide polymorphisms for correction. Using the Collaborative Study on the Genetics of Alcoholism LD data for chromosome 21, we simulated 1,000 replicates of parent-child trio data under the null hypothesis with two levels of LD: moderate and high. Assuming haplotype blocks were independent, we calculated the number of independent statistical tests using 3 haplotype blocking algorithms. We then compared the type I error rates using a principal components-based method, the three blocking methods, a traditional Bonferroni correction, and the unadjusted p-values obtained from FBAT. Under high LD conditions, the PC method and one of the blocking methods were slightly conservative, whereas the 2 other blocking methods exceeded the target type I error rate. Under conditions of moderate LD, we show that the blocking algorithm corrections are closest to the desired type I error, although still slightly conservative, with the principal components-based method being almost as conservative as the traditional Bonferroni correction.
尽管置换检验一直是评估使用多个标记的研究中显著性水平的金标准,但它很耗时。最近提出了一种基于标记之间潜在的成对连锁不平衡(LD)结构来确定有效独立检验数量的 Bonferroni 校正对名义 p 值的修正。我们建议使用独立 LD 块的数量加上独立单核苷酸多态性的数量进行校正。使用 21 号染色体酒精中毒遗传学合作研究的 LD 数据,我们在零假设下模拟了 1000 个具有两种 LD 水平的亲子三人组数据的重复:中度和高度。假设单倍型块是独立的,我们使用 3 种单倍型分组算法计算了独立统计检验的数量。然后,我们使用基于主成分的方法、3 种分组方法、传统的 Bonferroni 校正和 FBAT 获得的未调整 p 值比较了Ⅰ型错误率。在高 LD 条件下,PC 方法和一种分组方法稍微保守,而另外两种分组方法超过了目标Ⅰ型错误率。在中度 LD 条件下,我们表明,分组算法校正最接近所需的Ⅰ型错误率,尽管仍然稍微保守,基于主成分的方法几乎与传统的 Bonferroni 校正一样保守。