Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
BMC Genet. 2005 Dec 30;6 Suppl 1(Suppl 1):S96. doi: 10.1186/1471-2156-6-S1-S96.
Genome scans using dense single-nucleotide polymorphism (SNP) data have recently become a reality. It is thought that the increase in information content for linkage analysis as a result of the denser scans will help refine previously identified linkage regions and possibly identify new regions not identifiable using the sparser, microsatellite scans. In the context of the dense SNP scans, it is also possible to consider association strategies to provide even more information about potential regions of interest. To circumvent the multiple-testing issues inherent in association analysis, we use a recently developed strategy, implemented in PBAT, which screens the data to identify the optimal SNPs for testing, without biasing the nominal significance level. We compare the results from the PBAT analysis to that of quantitative linkage analysis on chromosome 4 using the Collaborative Study on the Genetics of Alcoholism data, as released through Genetic Analysis Workshop 14.
最近,利用高密度单核苷酸多态性(SNP)数据进行基因组扫描已成为现实。人们认为,由于扫描密度的增加,连锁分析的信息量将会增加,这有助于细化先前确定的连锁区域,并可能识别使用较稀疏的微卫星扫描无法识别的新区域。在密集 SNP 扫描的背景下,也可以考虑采用关联策略,提供更多有关潜在感兴趣区域的信息。为了规避关联分析中固有的多重检验问题,我们使用了最近开发的策略,该策略在 PBAT 中实现,用于筛选数据以识别最佳的 SNPs 进行测试,而不会使名义显着性水平产生偏差。我们将 PBAT 分析的结果与通过 Genetic Analysis Workshop 14 发布的酒精中毒遗传学协作研究数据在第 4 号染色体上进行的定量连锁分析结果进行了比较。