Panmanee Warunya, Vattanaviboon Paiboon, Poole Leslie B, Mongkolsuk Skorn
Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.
J Bacteriol. 2006 Feb;188(4):1389-95. doi: 10.1128/JB.188.4.1389-1395.2006.
Xanthomonas campestris pv. phaseoli OhrR belongs to a major family of multiple-cysteine-containing bacterial organic hydroperoxide sensors and transcription repressors. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that changing any cysteine residue to serine did not alter the ability of OhrR to bind to the P1 ohrR-ohr promoter but drastically affected the organic hydroperoxide-sensing and response mechanisms of the protein. Xanthomonas OhrR requires two cysteine residues, C22 and C127, to sense and respond to organic hydroperoxides. Analysis of the free thiol groups in wild-type and mutant OhrRs under reducing and oxidizing conditions indicates that C22 is the organic hydroperoxide-sensing residue. Exposure to organic hydroperoxides led to the formation of an unstable OhrR-C22 sulfenic acid intermediate that could be trapped by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and detected by UV-visible spectral analysis in an oxidized C127S-C131S mutant OhrR. In wild-type OhrR, the cysteine sulfenic acid intermediate rapidly reacts with the thiol group of C127, forming a disulfide bond. The high-performance liquid chromatography-mass spectrometry analysis of tryptic fragments of alkylated, oxidized OhrR and nonreducing polyacrylamide gel electrophoresis analyses confirmed the formation of reversible intersubunit disulfide bonds between C22 and C127. Oxidation of OhrR led to cross-linking of two OhrR monomers, resulting in the inactivation of its repressor function. Evidence presented here provides insight into a new organic hydroperoxide-sensing and response mechanism for OhrRs of the multiple-cysteine family, the primary bacterial transcription regulator of the organic hydroperoxide stress response.
野油菜黄单胞菌菜豆致病变种的OhrR属于含多个半胱氨酸的细菌有机氢过氧化物传感器和转录阻遏物的一个主要家族。定点诱变及随后的体内功能分析表明,将任何半胱氨酸残基变为丝氨酸不会改变OhrR与P1 ohrR-ohr启动子结合的能力,但会极大地影响该蛋白质的有机氢过氧化物传感和应答机制。野油菜黄单胞菌的OhrR需要两个半胱氨酸残基C22和C127来感知和应答有机氢过氧化物。对还原和氧化条件下野生型和突变型OhrR中游离巯基的分析表明,C22是有机氢过氧化物传感残基。暴露于有机氢过氧化物会导致形成不稳定的OhrR-C22亚磺酸中间体,该中间体可被7-氯-4-硝基苯并-2-恶唑-1,3-二唑捕获,并在氧化的C127S-C131S突变型OhrR中通过紫外-可见光谱分析检测到。在野生型OhrR中,半胱氨酸亚磺酸中间体迅速与C127的巯基反应,形成二硫键。对烷基化、氧化的OhrR的胰蛋白酶片段进行的高效液相色谱-质谱分析以及非还原聚丙烯酰胺凝胶电泳分析证实了C22和C127之间形成了可逆的亚基间二硫键。OhrR的氧化导致两个OhrR单体交联,从而使其阻遏功能失活。此处提供的证据为多半胱氨酸家族的OhrR(有机氢过氧化物应激反应的主要细菌转录调节因子)的新有机氢过氧化物传感和应答机制提供了深入了解。