Suppr超能文献

OhrR的新型有机氢过氧化物传感与响应机制,OhrR是一种主要的细菌传感器和有机氢过氧化物应激调节剂。

Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress.

作者信息

Panmanee Warunya, Vattanaviboon Paiboon, Poole Leslie B, Mongkolsuk Skorn

机构信息

Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand.

出版信息

J Bacteriol. 2006 Feb;188(4):1389-95. doi: 10.1128/JB.188.4.1389-1395.2006.

Abstract

Xanthomonas campestris pv. phaseoli OhrR belongs to a major family of multiple-cysteine-containing bacterial organic hydroperoxide sensors and transcription repressors. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that changing any cysteine residue to serine did not alter the ability of OhrR to bind to the P1 ohrR-ohr promoter but drastically affected the organic hydroperoxide-sensing and response mechanisms of the protein. Xanthomonas OhrR requires two cysteine residues, C22 and C127, to sense and respond to organic hydroperoxides. Analysis of the free thiol groups in wild-type and mutant OhrRs under reducing and oxidizing conditions indicates that C22 is the organic hydroperoxide-sensing residue. Exposure to organic hydroperoxides led to the formation of an unstable OhrR-C22 sulfenic acid intermediate that could be trapped by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and detected by UV-visible spectral analysis in an oxidized C127S-C131S mutant OhrR. In wild-type OhrR, the cysteine sulfenic acid intermediate rapidly reacts with the thiol group of C127, forming a disulfide bond. The high-performance liquid chromatography-mass spectrometry analysis of tryptic fragments of alkylated, oxidized OhrR and nonreducing polyacrylamide gel electrophoresis analyses confirmed the formation of reversible intersubunit disulfide bonds between C22 and C127. Oxidation of OhrR led to cross-linking of two OhrR monomers, resulting in the inactivation of its repressor function. Evidence presented here provides insight into a new organic hydroperoxide-sensing and response mechanism for OhrRs of the multiple-cysteine family, the primary bacterial transcription regulator of the organic hydroperoxide stress response.

摘要

野油菜黄单胞菌菜豆致病变种的OhrR属于含多个半胱氨酸的细菌有机氢过氧化物传感器和转录阻遏物的一个主要家族。定点诱变及随后的体内功能分析表明,将任何半胱氨酸残基变为丝氨酸不会改变OhrR与P1 ohrR-ohr启动子结合的能力,但会极大地影响该蛋白质的有机氢过氧化物传感和应答机制。野油菜黄单胞菌的OhrR需要两个半胱氨酸残基C22和C127来感知和应答有机氢过氧化物。对还原和氧化条件下野生型和突变型OhrR中游离巯基的分析表明,C22是有机氢过氧化物传感残基。暴露于有机氢过氧化物会导致形成不稳定的OhrR-C22亚磺酸中间体,该中间体可被7-氯-4-硝基苯并-2-恶唑-1,3-二唑捕获,并在氧化的C127S-C131S突变型OhrR中通过紫外-可见光谱分析检测到。在野生型OhrR中,半胱氨酸亚磺酸中间体迅速与C127的巯基反应,形成二硫键。对烷基化、氧化的OhrR的胰蛋白酶片段进行的高效液相色谱-质谱分析以及非还原聚丙烯酰胺凝胶电泳分析证实了C22和C127之间形成了可逆的亚基间二硫键。OhrR的氧化导致两个OhrR单体交联,从而使其阻遏功能失活。此处提供的证据为多半胱氨酸家族的OhrR(有机氢过氧化物应激反应的主要细菌转录调节因子)的新有机氢过氧化物传感和应答机制提供了深入了解。

相似文献

3
Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR.
Mol Cell. 2007 Nov 30;28(4):652-64. doi: 10.1016/j.molcel.2007.09.016.
7
Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor.
J Bacteriol. 2008 Sep;190(17):5738-45. doi: 10.1128/JB.00576-08. Epub 2008 Jun 27.
10

引用本文的文献

1
SydR, a redox-sensing MarR-type regulator of , is crucial for symbiotic infection of roots.
mBio. 2024 Dec 11;15(12):e0227524. doi: 10.1128/mbio.02275-24. Epub 2024 Oct 31.
2
MarR family proteins sense sulfane sulfur in bacteria.
mLife. 2024 May 15;3(2):231-239. doi: 10.1002/mlf2.12109. eCollection 2024 Jun.
3
MarR Family Transcriptional Regulators and Their Roles in Plant-Interacting Bacteria.
Microorganisms. 2023 Jul 29;11(8):1936. doi: 10.3390/microorganisms11081936.
4
The Arsenal of Species against Oxidants.
Antioxidants (Basel). 2023 Jun 14;12(6):1273. doi: 10.3390/antiox12061273.
5
Organic Hydroperoxide Induces Prodigiosin Biosynthesis in sp. ATCC 39006 in an OhrR-Dependent Manner.
Appl Environ Microbiol. 2022 Mar 8;88(5):e0204121. doi: 10.1128/AEM.02041-21. Epub 2022 Jan 19.
7
Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in ORS571.
Genes (Basel). 2020 Mar 20;11(3):335. doi: 10.3390/genes11030335.
8
Distinct Roles of Shewanella oneidensis Thioredoxin in Regulation of Cellular Responses to Hydrogen and Organic Peroxides.
Appl Environ Microbiol. 2019 Oct 16;85(21). doi: 10.1128/AEM.01700-19. Print 2019 Nov 1.
9
The MarR-Type Repressor MhqR Confers Quinone and Antimicrobial Resistance in .
Antioxid Redox Signal. 2019 Dec 1;31(16):1235-1252. doi: 10.1089/ars.2019.7750. Epub 2019 Aug 9.

本文引用的文献

2
Protein sulfenic acids in redox signaling.
Annu Rev Pharmacol Toxicol. 2004;44:325-47. doi: 10.1146/annurev.pharmtox.44.101802.121735.
3
Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor.
J Biol Chem. 2003 May 30;278(22):20240-4. doi: 10.1074/jbc.M300292200. Epub 2003 Mar 20.
4
Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61.
J Biol Chem. 2003 Mar 14;278(11):9203-11. doi: 10.1074/jbc.M209888200. Epub 2003 Jan 3.
8
Regulation of inducible peroxide stress responses.
Mol Microbiol. 2002 Jul;45(1):9-15. doi: 10.1046/j.1365-2958.2002.03015.x.
9
Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa.
J Biol Chem. 2002 Aug 9;277(32):29253-9. doi: 10.1074/jbc.M111381200. Epub 2002 May 28.
10
OxyR: a molecular code for redox-related signaling.
Cell. 2002 May 3;109(3):383-96. doi: 10.1016/s0092-8674(02)00723-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验