Gangnon Ronald E
Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 610 N. Walnut Street, Madison, Wisconsin 53726, USA.
Stat Med. 2006 Mar 15;25(5):883-95. doi: 10.1002/sim.2410.
In this paper, we evaluate the usefulness of local Bayes factors as a tool for spatial cluster detection. In particular, we consider whether local Bayes factors from models with a fixed, but overly large number of clusters can consistently identify the evidence for clustering for a variety of prior specifications for the cluster locations. We also investigate the robustness of the local Bayes factor to the number of clusters included in the model. We explore the impacts of prior choice for cluster location and the number of clusters on posterior inference for disease rates. We conduct the comparison by analysing data on 1990 breast cancer incidence in Wisconsin.
在本文中,我们评估局部贝叶斯因子作为空间聚类检测工具的效用。具体而言,我们考虑来自具有固定但数量过多的聚类的模型的局部贝叶斯因子,对于聚类位置的各种先验规范,是否能够一致地识别聚类的证据。我们还研究了局部贝叶斯因子对于模型中包含的聚类数量的稳健性。我们探讨了聚类位置的先验选择和聚类数量对疾病发病率后验推断的影响。我们通过分析威斯康星州1990年乳腺癌发病率的数据进行比较。