Wheeler David C
Department of Biostatistics, Emory University, Atlanta, GA, USA.
Int J Health Geogr. 2007 Mar 27;6:13. doi: 10.1186/1476-072X-6-13.
Spatial cluster detection is an important tool in cancer surveillance to identify areas of elevated risk and to generate hypotheses about cancer etiology. There are many cluster detection methods used in spatial epidemiology to investigate suspicious groupings of cancer occurrences in regional count data and case-control data, where controls are sampled from the at-risk population. Numerous studies in the literature have focused on childhood leukemia because of its relatively large incidence among children compared with other malignant diseases and substantial public concern over elevated leukemia incidence. The main focus of this paper is an analysis of the spatial distribution of leukemia incidence among children from 0 to 14 years of age in Ohio from 1996-2003 using individual case data from the Ohio Cancer Incidence Surveillance System (OCISS).Specifically, we explore whether there is statistically significant global clustering and if there are statistically significant local clusters of individual leukemia cases in Ohio using numerous published methods of spatial cluster detection, including spatial point process summary methods, a nearest neighbor method, and a local rate scanning method. We use the K function, Cuzick and Edward's method, and the kernel intensity function to test for significant global clustering and the kernel intensity function and Kulldorff's spatial scan statistic in SaTScan to test for significant local clusters.
We found some evidence, although inconclusive, of significant local clusters in childhood leukemia in Ohio, but no significant overall clustering. The findings from the local cluster detection analyses are not consistent for the different cluster detection techniques, where the spatial scan method in SaTScan does not find statistically significant local clusters, while the kernel intensity function method suggests statistically significant clusters in areas of central, southern, and eastern Ohio. The findings are consistent for the different tests of global clustering, where no significant clustering is demonstrated with any of the techniques when all age cases are considered together.
This comparative study for childhood leukemia clustering and clusters in Ohio revealed several research issues in practical spatial cluster detection. Among them, flexibility in cluster shape detection should be an issue for consideration.
空间聚类检测是癌症监测中的一项重要工具,用于识别高风险区域并生成有关癌症病因的假设。在空间流行病学中,有许多聚类检测方法用于调查区域计数数据和病例对照数据中癌症发生的可疑聚集情况,其中对照是从高危人群中抽样的。由于儿童白血病与其他恶性疾病相比在儿童中的发病率相对较高,且公众对白血病发病率升高高度关注,文献中的众多研究都聚焦于儿童白血病。本文的主要重点是利用俄亥俄州癌症发病率监测系统(OCISS)的个体病例数据,分析1996 - 2003年俄亥俄州0至14岁儿童白血病发病率的空间分布。具体而言,我们使用多种已发表的空间聚类检测方法,包括空间点过程汇总方法、最近邻方法和局部率扫描方法,探索俄亥俄州是否存在具有统计学意义的全局聚类以及个体白血病病例是否存在具有统计学意义的局部聚类。我们使用K函数、库齐克和爱德华兹方法以及核强度函数来检验显著的全局聚类,并使用核强度函数和SaTScan中的库尔道夫空间扫描统计量来检验显著的局部聚类。
我们发现了一些证据,尽管尚无定论,表明俄亥俄州儿童白血病存在显著的局部聚类,但没有显著的总体聚类。局部聚类检测分析的结果对于不同的聚类检测技术并不一致,其中SaTScan中的空间扫描方法未发现具有统计学意义的局部聚类,而核强度函数方法表明俄亥俄州中部、南部和东部地区存在具有统计学意义的聚类。对于全局聚类的不同检验结果是一致的,当将所有年龄的病例一起考虑时,任何技术都未显示出显著的聚类。
这项针对俄亥俄州儿童白血病聚类的比较研究揭示了实际空间聚类检测中的几个研究问题。其中,聚类形状检测的灵活性应是一个需要考虑的问题。