Bernardo Antonietta, Minghetti Luisa
Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
Curr Pharm Des. 2006;12(1):93-109. doi: 10.2174/138161206780574579.
The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) belongs to a large group of nuclear receptors controlling reproduction, metabolism, development and immune response. Upon activation by specific agonists, these receptors form dimers and translocate to the nucleus, where they act as agonist-dependent transcription factors and regulate gene expression by binding to specific promoter regions of target genes. The observation that PPAR-gamma is involved in the regulation of macrophage differentiation and activation in the peripheral organs has prompted the investigation of the functional role of PPAR-gamma in microglial cells, the main macrophage population of the CNS. The present review summarizes the several lines of evidence supporting that PPAR-gamma natural and synthetic agonists may control brain inflammation by inhibiting several functions associated to microglial activation, such as the expression of surface antigens and the synthesis of nitric oxide, prostaglandins, inflammatory cytokines and chemokines. Moreover, one of the major natural PPAR-gamma agonist, 15d-prostaglandin J(2) may contribute to the safe elimination of activated microglia by inducing apoptosis. Synthetic PPAR-gamma agonists do not entirely reproduce the range of 15d-prostaglandin J(2) effects, suggesting that PPAR-gamma independent mechanisms are also involved in the action of this prostaglandin. In addition to microglia, PPAR-gamma agonists affect functions and survival of other neural cells, including astrocytes, oligodendrocytes and neurons. Although most of the evidence comes from in vitro observations, an increasing number of studies in animal models further supports the potential therapeutic use of PPAR-gamma agonists in human brain diseases including multiple sclerosis, Parkinson's disease and Alzheimer's disease.
过氧化物酶体增殖物激活受体γ(PPAR-γ)属于一大类控制生殖、代谢、发育和免疫反应的核受体。在被特定激动剂激活后,这些受体形成二聚体并转移至细胞核,在细胞核中它们作为依赖激动剂的转录因子,通过与靶基因的特定启动子区域结合来调节基因表达。PPAR-γ参与外周器官中巨噬细胞分化和激活的调节这一观察结果,促使人们对PPAR-γ在小胶质细胞(中枢神经系统主要的巨噬细胞群体)中的功能作用进行研究。本综述总结了几条证据,支持PPAR-γ天然和合成激动剂可能通过抑制与小胶质细胞激活相关的几种功能来控制脑部炎症,如表面抗原的表达以及一氧化氮、前列腺素、炎性细胞因子和趋化因子的合成。此外,主要的天然PPAR-γ激动剂之一15d-前列腺素J2可能通过诱导凋亡来促进激活的小胶质细胞的安全清除。合成PPAR-γ激动剂并不能完全重现15d-前列腺素J2的全部作用范围,这表明PPAR-γ非依赖机制也参与了这种前列腺素的作用。除了小胶质细胞外,PPAR-γ激动剂还影响其他神经细胞的功能和存活,包括星形胶质细胞、少突胶质细胞和神经元。尽管大多数证据来自体外观察,但越来越多的动物模型研究进一步支持了PPAR-γ激动剂在包括多发性硬化症、帕金森病和阿尔茨海默病在内的人类脑部疾病中的潜在治疗用途。